Skip to main content

Advertisement

Log in

An insight into topological, machine and Deep Learning-based approaches for influential node identification in social media networks: a systematic review

  • Regular Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

Online social networks are social interaction platforms having dynamic nature with billions of users around the world. Online social communications among its multiple users cause a huge chunk of information which provides an opportunity to study the human behavior. In our day-to-day activities, we always ask for suggestions or advice from our friends, neighbors, or relatives to take any kind of decision. Similarly, in case of social networks, we are moved by the decisions of influential people. It is therefore vital to discover what amount of entities impacts each other because it is mainly used to regulate and coordinate rumors, viral marketing, ailments, and information diffusion. Numerous solutions already exist to determine prominent users. Traditional methods like structure-based methods (centrality-based techniques) examine the importance of a user in accordance to their position in the graph, and likewise user-interaction-based methods (machine learning-based methods) inspect the influence of a user by only considering features. Traditional approaches measure the relevance of nodes using either network topology or node attributes. However, for in-depth insights, both node characteristics and network topologies must be considered when evaluating the influencing relevance of nodes. Deep Learning models like Graph Convolution Networks paved the way to incorporate both Network topology and node characteristics in detection of influential users in a social network. In Deep Learning, Graph Convolution Networks are used which operate on Non-Euclidean data, as most of the data in real world are Non-Euclidean. Deep Learning approaches avoid dimensionality reduction and its feature extraction is multimodal, efficient as well as automatic as compared to traditional machine learning algorithms. In this paper, we have comprehensively discussed all prevalent traditional methods to identify influential users in online social networks and have listed the shortcomings that were solved by deep learning-based methods. The paper provides an in-depth comparative analysis between traditional and deep learning methods in identifying influential users.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Abbruzzese, R., Gaeta, A., Loia, V., Lomasto, L., Orciuoli, F.: Detecting influential news in online communities: an approach based on hexagons of opposition generated by three-way decisions and probabilistic rough sets. Inf. Sci. 578, 364–377 (2021)

    MathSciNet  Google Scholar 

  2. Ahanger, A.B., Aalam, S.W., Bhat, M.R., Assad, A.: Popularity Bias in Recommender Systems—A Review, pp. 431–444 (2022)

  3. Al-garadi, M.A., Varathan, K.D., Ravana, S.D.: Identification of influential spreaders in online social networks using interaction weighted K-core decomposition method. Phys. A 468, 278–288 (2016)

    Google Scholar 

  4. Al-Garadi, M.A., Varathan, K.D., Ravana, S.D., Ahmed, E., Mujtaba, G., Khan, M.U., Khan, S.U.: Analysis of online social network connections for identification of influential users: survey and open research issues. ACM Comput. Surv. 51(1), 1–37 (2018)

    Google Scholar 

  5. Alshahrani, M., Fuxi, Z., Sameh, A., Mekouar, S., Huang, S.: Efficient algorithms based on centrality measures for identification of top-K influential users in social networks. Inf. Sci. 527, 88–107 (2020)

    MathSciNet  Google Scholar 

  6. Alwan, W.H., Fazl-Ersi, E., Vahedian, A.: Identifying influential users on Instagram through visual content analysis. IEEE Access 8, 169594–169603 (2020)

    Google Scholar 

  7. Arularasan, A.N., Suresh, A., Seerangan, K.: Identification and classification of best spreader in the domain of interest over the social networks. Clust. Comput. 22, 4035–4045 (2019)

    Google Scholar 

  8. Bahutair, M., Al, Z., Ibrahim, A.: NodeRank: finding influential nodes in social networks based on interests. J. Supercomput. 78(2), 2098–2124 (2022)

    Google Scholar 

  9. Balaji, T.K., Annavarapu, C.S., Bablani, A.: Machine learning algorithms for social media analysis : a survey. Comput. Sci. Rev. 40, 100395 (2021)

    Google Scholar 

  10. Basaras, P., Iosifidis, G., Katsaros, D., Tassiulas, L.: Identifying influential spreaders in complex multilayer networks: a centrality perspective. IEEE Trans. Netw. Sci. Eng. 6(1), 31–45 (2017)

    MathSciNet  Google Scholar 

  11. Batagelj, V.: An O(m) Algorithm for Cores Decomposition of Networks, pp. 1–9 (2002)

  12. Bigonha, C., Cardoso, T.N.C., Moro, M.M. et al. Sentiment-based influence detection on Twitter. J Braz Comput Soc 18, 169–183 (2012). https://doi.org/10.1007/s13173-011-0051-5

    Article  Google Scholar 

  13. Bonacich, P. (2007) Some Unique Properties of Eigenvector Centrality. Social Networks, 29, 555–564. https://doi.org/10.1016/j.socnet.2007.04.002

    Article  Google Scholar 

  14. Borgatti, S.P., Everett, M.G.: A graph-theoretic perspective on centrality. Soc. Netw. 28(4), 466–484 (2006)

    Google Scholar 

  15. Brin, S., Page, L.: Reprint of: The anatomy of a large-scale hypertextual web search engine. Comput. Netw. 56(18), 3825–3833 (2012)

    Google Scholar 

  16. Chai, W., Xu, W., Zuo, M., Wen, X.: A Novel Framework to Identify and Predict Influential Users in Micro-Blogging. ACQR (2013)

  17. Chen, W., Cheng, S., He, X., Jiang, F.: InfluenceRank: An Efficient Social Influence Measurement for Millions of Users in Microblog (2012)

  18. Corsi, N., Nguyen, D.D., Butaney, M., Majdalany, S.E., Corsi, M.P., Malchow, T., Piontkowski, A.J., Trinh, Q.D., Loeb, S., Abdollah, F.: Top 100 urology influencers on Twitter: is social media influence associated with academic impact? Top 100 urology influencers on Twitter: is social media influence associated with academic impact? Eur. Urol. Focus 9, 396–402 (2022)

    PubMed  Google Scholar 

  19. Cossu, J.V., Dugue, N., Labatut, V.: Detecting real-world influence through Twitter. In: Proceedings—2nd European Network Intelligence Conference, ENIC 2015, pp. 83–90 (2015)

  20. De La Garza H, Maymone MBC, Vashi NA. Impact of Social Media on Skin Cancer Prevention. Int J Environ Res Public Health. 2021;18(9):5002. https://doi.org/10.3390/ijerph18095002

    Article  PubMed  Google Scholar 

  21. De Salve, A., Mori, P., Guidi, B., Ricci, L., Di Pietro, R.: Predicting influential users in online social network groups. ACM Trans. Knowl. Discov. Data 15(3), 1–50 (2021)

    Google Scholar 

  22. Ding, Z.Y., Jia, Y., Zhou, B., Han, Y., He, L., Zhang, J.F.: Measuring the spreadability of users in microblogs. J. Zhejiang Univ. Sci. C 14(9), 701–710 (2013)

    Google Scholar 

  23. Elbaghazaoui, B.E., Amnai, M., Fakhri, Y.: Data profiling and machine learning to identify influencers from social media platforms. J. ICT Stand. 10, 201–218 (2022)

    Google Scholar 

  24. Gammoudi, F., Sendi, M., Omri, M.N.: A survey on social media influence environment and influencers identification. Soc. Netw. Anal. Min. 12(1), 145 (2022)

    PubMed  PubMed Central  Google Scholar 

  25. Garas, A., Schweitzer, F., Havlin, S.: A k-shell decomposition method for weighted networks. New J. Phys. 14(8), 083030 (2012)

    Google Scholar 

  26. Ghosal, D., Majumder, N., Poria, S., Chhaya, N., Gelbukh, A.: DialogueGCN: A Graph Convolutional Neural Network for Emotion Recognition in Conversation. 2 (2019)

  27. Giri, K.J., Jeelani, Z., Bhat, J.I., Bashir, R.: Survey on Reversible Watermarking Techniques for Medical Images, pp. 177–198 (2021)

  28. Giri, K.J., Parah, S.A., Bashir, R., Muhammad, K. (eds.) Algorithms for Intelligent Systems Multimedia Security Algorithm Development, Analysis and Applications

  29. Gross J, von Wangenheim F (2022) Influencer Marketing onInstagram: empirical Research on Social Media Engagement with Sponsored Posts. J. Interactive Advert. https://doi.org/10.1080/15252019.2022.2123724

    Article  Google Scholar 

  30. Gu, J., Abroms, L.C., Broniatowski, D.A., Evans, W.D.: AnInvestigation of Influential Users inthe Promotion and Marketing ofHeated Tobacco Products onInstagram: A Social NetworkAnalysis. Int. J. Environ. Res. PublicHealth 2022, 19, 1686. https://doi.org/10.3390/ijerph19031686

    PubMed  PubMed Central  Google Scholar 

  31. Hafiene, N., Karoui, W., Romdhane, L.B.L: (2020) Influential nodes detection in dynamic social networks: A survey. Expert Syst. Appl., 159, 113642.  https://doi.org/10.1016/j.eswa.2020.113642

    Article  Google Scholar 

  32. Han, M., Li, Y.: Influence analysis: a survey of the state-of-the-art. Math. Found. Comput. 1(3), 201–253 (2018)

    MathSciNet  Google Scholar 

  33. He, Y.: Identifying Influential Users in Social Network with Review Data, pp. 1–15

  34. Hidri, A.: Towards Inferring Influential Facebook Users (2021)

  35. Hinton, G.E.: Communicated by Yann Le Cun a fast learning algorithm for deep belief nets 500 units. Neural Comput. 18, 1527–1554 (2006)

    MathSciNet  PubMed  Google Scholar 

  36. Huang, X., Chen, D., Wang, D., Ren, T.: Identifying Influencers in Social Networks. Entropy. 2020; 22(4):450. https://doi.org/10.3390/e22040450

    ADS  MathSciNet  PubMed  PubMed Central  Google Scholar 

  37. Jabeur, L.B., Tamine, L., Boughanem, M.: Active Microbloggers : Identifying Influencers, Leaders and Discussers in Microblogging Networks, pp. 111–117 (2012)

  38. Jain, S., Sinha, A.: Identification of influential users on Twitter: a novel weighted correlated influence measure for Covid-19. Chaos Solitons Fractals 139, 110037 (2020)

    MathSciNet  PubMed  PubMed Central  Google Scholar 

  39. Jain, L., Katarya, R., Sachdeva, S.: Opinion leader detection using whale optimization algorithm in online social network. Expert Syst. Appl. 142, 113016 (2020)

    Google Scholar 

  40. Jeelani, Z.: Digital image encryption based on chaotic cellular automata. Int. J. Comput. Vis. Image Process. 10(4), 29–42 (2020)

    Google Scholar 

  41. Jeelani, Z., Qadir, F., Gani, G.: Cellular automata-based digital image scrambling under JPEG compression attack. Multimed. Syst. 27(6), 1025–1034 (2021)

    Google Scholar 

  42. Jiang, J., Wilson, C., Wang, X., Sha, W., Huang, P., Dai, Y., Zhao, B.Y.: Understanding latent interactions in online social networks. ACM Trans. Web 7(4), 1–39 (2013)

    CAS  Google Scholar 

  43. Kao, L.: Mining Influential Users in Social Network (2015)

  44. Karoui, W., Hafiene, N., Ben, R.L.: Machine learning-based method to predict influential nodes in dynamic social networks. Soc. Netw. Anal. Min. 12(1), 108 (2022)

    Google Scholar 

  45. Karoui, W., Hafiene, N., Ben, L.: Exploring modified areas for updating influential nodes. Inf. Syst. 112, 102132 (2023)

    Google Scholar 

  46. Khanday, H.A., Ganai, A.H., Hashmy, R.: Users in online social networks. In: 2018 International Conference on Soft-Computing and Network Security (ICSNS), pp. 1–6 (2018)

  47. Kim, E.S.: An Analytical Way to Find Influencers on Social Networks and Validate their Effects in Disseminating Social Games, 2008 (2008). https://doi.org/10.1109/ASONAM.2009.59

  48. Kumar, S., Singhla, L., Jindal, K., Grover, K., Panda, B.S.: IM-ELPR: influence maximization in social networks using label propagation based community structure. Appl. Intell. 51, 7647–7665 (2021)

    Google Scholar 

  49. Li, W., Li, Y., Liu, W., Wang, C.: An influence maximization method based on crowd emotion under an emotion-based attribute social network. Inf. Process. Manag. 59(2), 102818 (2022)

    Google Scholar 

  50. Liao, H., Mariani, M.S., Medo, M., Zhang, Y.C., Zhou, M.Y.: Ranking in evolving complex networks. Phys. Rep. 689, 1–54 (2017)

    ADS  MathSciNet  Google Scholar 

  51. Liu, D., Chen, X.: (2011) Rumor Propagation in Online Social Networks Like Twitter—A Simulation Study. In: 2011 Third International Conference on Multimedia Information Networking and Security, pp. 278–282

  52. Liu, N., Li, L.: Identifying Domain-dependent influential microblog users: a post-feature based approach, no. (1), pp. 3122–3123 (2007)

  53. Liu, Y., Wei, X., Chen, W., Hu, L., He, Z.: A graph-traversal approach to identify influential nodes in a network. Patterns 2(9), 100321 (2021)

    PubMed  PubMed Central  Google Scholar 

  54. Lü, L., Chen, D., Ren, X.L., Zhang, Q.M., Zhang, Y.C., Zhou, T.: Vital nodes identification in complex networks. Phys. Rep. 650, 1–63 (2016)

    ADS  MathSciNet  Google Scholar 

  55. Majeed, T., Aalam, S.W., Ahanger, A.B., Masoodi, T.A., Macha, M.A., Bhat, A.A., Bhat, M.R., Assad, A.: Transfer Learning approach for classification of cervical cancer based on histopathological images. In: 2023 3rd International conference on Artificial Intelligence and Signal Processing (AISP), pp. 1–5. IEEE (2023)

  56. Mao, G.: A PageRank-based mining algorithm for user influences on micro-blogs (2016)

  57. Mei, Y., Zhong, Y., Yang, J.: Finding and analyzing principal features for measuring user influence on Twitter, 2015, pp. 478–486 (2006)

  58. Mislove, A., Marcon, M., Gummadi, K.P., Druschel, P., Bhattacharjee, B.: Measurement and analysis of online social networks. In: Proceedings of the ACM SIGCOMM Internet Measurement Conference, IMC, pp. 29–42. ACM Press, New York (2007)

  59. Mithe, S.: Deep Learning on Graphs using Graph Convolutional Networks (2019)

  60. Mnasri, W., Azaouzi, M., Romdhane, LB.: (2021) Parallel social behavior-based algorithm for identification of influential users in social network. Appl Intell (Dordr) 51(10):7365–7383. https://doi.org/10.1007/s10489-021-02203-x

    Google Scholar 

  61. Morone, F., Makse, HA.: Influence maximization in complex networks through optimal percolation. Nature 524(7563):65–8. 2015. https://doi.org/10.1038/nature14604. Epub 2015 Jul 1. Erratum in: Nature. 2015 Nov 26;527(7579):544. PMID: 26131931.

    ADS  CAS  PubMed  Google Scholar 

  62. Nafees, L., Cook, C.M., Nikolov, A.N., Stoddard, J.E.: Can social media influencer (SMI) power influence consumer brand attitudes? The mediating role of perceived SMI credibility. Digit. Bus. 1(2), 100008 (2021)

    Google Scholar 

  63. Newman, M.E.J.: Course 8 complex networks. In: Les Houches Summer School Proceedings, vol. 85, pp. 309–342 (2007). https://doi.org/10.1016/S0924-8099(07)80015-1

  64. Ngo, D.-T., Cao, C.-N., Hoang, P.-L., Ngo, X.-B., Nguyen, T.-D., Tran, D.-A.: Identifying Micro-influencers on Social Media using User Graph Construction Approach (2020)

  65. Nouh, M., Nurse, J.R.C.C.: Identifying key-players in online activist groups on the Facebook social network. In: Proceedings—15th IEEE International Conference on Data Mining Workshop, ICDMW 2015, pp. 969–978 (2016)

  66. Peng, S., Zhou, Y., Cao, L., Shui, Yu., Niu, J., Jia, W.: Influence analysis in social networks: a survey. J. Netw. Comput. Appl. 106(January), 17–32 (2018)

    Google Scholar 

  67. Pham, H., Shahabi, C.: Spatial influence—measuring followship in the real world. In: 2016 IEEE 32nd International Conference on Data Engineering, ICDE 2016, pp. 529–540 (2016)

  68. Praas, J.: Predicting influence spread in Online Social Networks using combinations of node centralities, pp. 1–10 (2020)

  69. Qiu, J., Tang, J., Ma, H., Dong, Y., Wang, K., Tang, J.: DeepInf: Social Influence Prediction with Deep Learning

  70. Räbiger, S., Spiliopoulou, M.: A framework for validating the merit of properties that predict the influence of a twitter user. Expert Syst. Appl. 42(5), 2824–2834 (2015)

    Google Scholar 

  71. Rani, S.: Influential Node Detection and Ranking with Fusion of Heterogeneous Social Media Information, pp. 1–23 (2022)

  72. Rashid, Y., Bhat, J.I. Topological to deep learning era for identifying influencers in online social networks :a systematic review. Multimed Tools Appl 83, 14671–14714 (2024). https://doi.org/10.1007/s11042-023-16002-8

    Article  Google Scholar 

  73. Rashid, Y., Bhat, J.I.: OlapGN: a multi-layered graph convolution network-based model for locating influential nodes in graph networks. Knowl. Based Syst. 283, 111163 (2024). https://doi.org/10.1016/j.knosys.2023.111163

    Google Scholar 

  74. Razis, G., Anagnostopoulos, I., Zeadally, S.: Modeling influence with semantics in social networks: a survey. ACM Comput. Surv. 53(1), 1–38 (2020)

    Google Scholar 

  75. Saeidi, M., Milios, E.E., Zeh, N. (2021). Graph Convolutional Networks for Categorizing Online Harassment on Twitter. 2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA), 946–951.

  76. Sarkar, D., Kole, D.K., Jana, P.: Survey of influential nodes identification in online social networks. Int. J. Virtual Commun. Soc. Netw. 8(4), 57–69 (2016)

    Google Scholar 

  77. Sarna, S., Aditi, G., Musfique, D., Iqbal, A.: Query-oriented topical influential users detection for top-k trending topics in Twitter, pp. 13415–13434 (2022)

  78. Shafiq, M.Z., Ilyas, M.U., Liu, A.X., Radha, H.: Identifying leaders and followers in online social networks. IEEE J. Sel. Areas Commun. 31(9), 618–628 (2013)

    Google Scholar 

  79. Silva, A., Guimarães, S., Meira Jr, W. and Zaki, M.: ProfileRank: Finding Relevant Content and Influential Users Based on Information Diffusion

  80. Singh, S.S., Singh, K., Kumar, A. et al. ACO-IM: maximizing influence in social networks using ant colony optimization. Soft Comput 24, 10181–10203 (2020). https://doi.org/10.1007/s00500-019-04533-y

    Google Scholar 

  81. Tiwary, A., Kumar, M.: Determination of category-wise influential users using information retrieval technique from Twitter. J. Algebr. Stat. 13(3), 2313–27 (2022)

    Google Scholar 

  82. Wang, F., She, J., Ohyama, Y., Wu, M.: Deep-learning-based identification of influential spreaders in online social networks. In: IECON 2019—45th Annual Conference of the IEEE Industrial Electronics Society, vol. 1, pp. 6854–6858 (2019)

  83. Wang, N., Sun, Q., Zhou, Y., Shen, S.: A study on influential user identification in online social networks. Chin. J. Electron. 25(3), 467–473 (2016)

    Google Scholar 

  84. Wang, Q., Zhuang, D. & Xie, H. Identification of Influential Nodes for Drone Swarm Based on Graph Neural Networks. Neural Process Lett 53, 4073–4096 (2021). https://doi.org/10.1007/s11063-021-10583-x

    Google Scholar 

  85. Wei, B., Liu, J., Wei, D., Gao, C., Deng, Y.: Weighted k-shell decomposition for complex networks based on potential edge weights. Phys. A 420, 277–283 (2014)

    Google Scholar 

  86. Wen, T., Deng, Y.: Identification of influencers in complex networks by local information dimensionality. Inf. Sci. 512, 549–562 (2020)

    Google Scholar 

  87. Weng, J., Lim, E.-P., Jiang, J.: Institutional Knowledge at Singapore Management University Twitterrank: Finding Topic-Sensitive Influential Twitterers (2010). https://doi.org/10.1145/1718487.1718520

  88. Yamaguchi, Y., Takahashi, T.: TURank: Twitter User Ranking Based on User-Tweet Graph Analysis, pp. 240–253 (2010)

  89. Yin, Z., Zhang, Y.: Measuring pair-wise social influence in microblog. In: Proceedings—2012 ASE/IEEE International Conference on Privacy, Security, Risk and Trust and 2012 ASE/IEEE International Conference on Social Computing, SocialCom/PASSAT 2012, pp. 502–507 (2012)

  90. Yu, E., Chen, D., Fu, Y., Xu, Y.: Identifying critical nodes in complex networks by graph representation learning (2022)

  91. Zareie, A., Sheikhahmadi, A., Jalili, M.: Identification of influential users in social networks based on users’ interest. Inf. Sci. 493, 217–231 (2019)

    MathSciNet  Google Scholar 

  92. Zeng, A., Zhang, C.: Ranking spreaders by decomposing complex networks. Phys. Lett. A 377(14), 1031–1035 (2013)

    ADS  CAS  Google Scholar 

  93. Zhang, W., Yang, J., Ding, X.Y., Zou, X.M., Han, H.Y., Zhao, Q.C.: Groups make nodes powerful: identifying influential nodes in social networks based on social conformity theory and community features. Expert Syst. Appl. 125, 249–258 (2019). https://doi.org/10.1016/j.eswa.2019.02.007

    Article  Google Scholar 

  94. Zhang, Y.-C., Yeung, C.H., Zhou, T., Lu, L.: Leaders in social networks, the delicious case. PLoS ONE 6(6), e21202 (2011). https://doi.org/10.1371/journal.pone.0021202

    ADS  PubMed  PubMed Central  Google Scholar 

  95. Zhang, Z., Li, X., Gan, C.: Identifying influential nodes in social networks via community structure and influence distribution difference (2020)

  96. G. Zhao, P. Jia, C. Huang, A. Zhou and Y. Fang, "A Machine Learning Based Framework for Identifying Influential Nodes in Complex Networks. In: IEEE Access, vol. 8, pp. 65462–65471, 2020, https://doi.org/10.1109/ACCESS.2020.2984286

    Google Scholar 

  97. Zhao, G., Jia, P., Zhou, A., Zhang, B.: Neurocomputing InfGCN: identifying influential nodes in complex networks with graph convolutional networks. Neurocomputing 414, 18–26 (2020)

    Google Scholar 

  98. Zhou, J., Zhang, Y., Cheng, J.: Preference-based mining of top-K influential nodes in social networks. Future Gener. Comput. Syst. 31, 40–47 (2012)

    Google Scholar 

  99. Zhou, S., Blazquez, M., Mccormick, H., Barnes, L.: How social media influencers ’ narrative strategies benefit cultivating influencer marketing: tackling issues of cultural barriers, commercialised content, and sponsorship disclosure. J. Bus. Res. 134(May), 122–142 (2021)

    Google Scholar 

  100. Zhu, Y., Tang, J., Tang, X.: Pricing influential nodes in online social networks. Proc. VLDB Endow. 13(10), 1614–1627 (2020)

    Google Scholar 

  101. Zhuang, Y.-B., Li, Z.-H., Zhuang, Y.-J.: Identification of influencers in online social networks: measuring influence considering multidimensional factors exploration. Heliyon 7, e06472 (2021). https://doi.org/10.1016/j.heliyon.2021.e06472.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javaid Iqbal Bhat.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by B. Bao.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashid, Y., Bhat, J.I. An insight into topological, machine and Deep Learning-based approaches for influential node identification in social media networks: a systematic review. Multimedia Systems 30, 57 (2024). https://doi.org/10.1007/s00530-023-01258-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00530-023-01258-9

Keywords

Navigation