Skip to main content

Advertisement

Log in

A comparative analysis of video codecs for multihop wireless video sensor networks

  • Regular Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

Wireless video sensor networks (WVSNs) have drawn significant attention in recent years due to the advent of low-cost miniaturized cameras, which makes it feasible to realize large-scale WVSNs for a variety of applications including security surveillance, environmental tracking, and health monitoring. However, the conventional video coding paradigms are not suitable for WVSNs due to resource constraints such as limited computation power, battery energy, and network bandwidth. In this paper, we evaluated and analyzed the performance of video codecs based on emerging video coding paradigms such as distributed video coding and distributed compressive video sensing for multihop WVSNs. The main objective of this work was to provide an insight into the computational (encoding/decoding) complexity, energy consumption, node and network lifetime, processing and memory requirements, and the quality of reconstruction of these video codecs. Based on the findings, this paper also provides some guidelines for the selection of appropriate video codecs for a given WVSN application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. A configurable setting GOP (Group of Pictures) determines the distance between key frames in the video sequence, and thus the coding efficiency. For example, if GOP = m, there will be one key frame for every m-1 non-key frames (also referred to as WZ frames).

  2. NRZ encoding uses two voltage levels to represent a digital signal. A positive and negative voltage represents a binary one, and zero, respectively. NRZ encoding needs much less bandwidth than Manchester encoding for a given bit rate.

  3. NCFSK is a specialized non-coherent orthogonal modulation technique that has no phase relationship between consecutive elements of signal, i.e. phase varies randomly.

References

  1. Imran, N., Seet, B.-C., Fong, A.C.M.: Performance analysis of video encoders for wireless video sensor networks. In: 2011 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PacRim) (2011)

  2. Bhanu, B., et al.: Research challenges for wireless multimedia sensor networks. In: Distributed Video Sensor Networks, Springer, London, pp. 233–246

  3. Girod, B., et al.: Distributed video coding. Proc. IEEE 93(1), 71–83 (2005)

    Article  Google Scholar 

  4. Zamalloa, M., et al.: An analysis of unreliability and asymmetry in low-power wireless links. ACM Trans. Sen. Netw. 3(2), 7 (2007)

    Article  Google Scholar 

  5. Dufaux, F., Gao, W., Tubaro, S., Vetro, A.: Distributed video coding: trends and perspectives. EURASIP J. Image Video Process. 2009 (2009). doi:10.1155/2009/508167

  6. Puri, R., et al.: Distributed video coding in wireless sensor networks. Signal Process. Mag. IEEE 23(4), 94–106 (2006)

    Article  Google Scholar 

  7. Pereira, F., et al.: Distributed video coding: selecting the most promising application scenarios. Image Commun. 23(5), 339–352 (2009)

    Google Scholar 

  8. Aaron, A., Rui, Z., Girod, B.: Wyner–Ziv coding of motion video. In: Conference Record of the Thirty-Sixth Asilomar Conference on Signals, Systems and Computers, 2002 (2002)

  9. Aaron, A., et al.: Transform-domain Wyner–Ziv codec for video. SPIE, vol. 5308, pp. 520–528 (2004)

  10. Artigas, X., et al.: The DISCOVER codec: architecture, techniques and evaluation. Pict. Coding Symp. 17, 1103–1120 (2007)

    Google Scholar 

  11. DISCOVER video codec. http://www.discoverdvc.org. Accessed 14 December 2011

  12. Tagliasacchi, M., et al.: Intra mode decision based on spatio-temporal cues in pixel domain Wyner–ZIV video coding. In: 2006 IEEE International Conference on Acoustics, Speech and Signal Processing, 2006. ICASSP 2006 Proceedings (2006)

  13. Aaron, A., Rane, S., Girod, B.: Wyner–Ziv video coding with hash-based motion compensation at the receiver. In: 2004 International Conference on Image Processing, 2004. ICIP ‘04 (2004)

  14. Ascenso, J., Pereira, F.: Adaptive hash-based side information exploitation for efficient Wyner–Ziv video coding. In: IEEE International Conference on Image Processing, 2007. ICIP 2007 (2007)

  15. Brites, C., Ascenso, J., Pereira, F.: Studying temporal correlation noise modeling for pixel based Wyner–Ziv video coding. In: 2006 IEEE International Conference on Image Processing (2006)

  16. Ascenso, J., Brites, C., Pereira, F.: Improving frame interpolation with spatial motion smoothing for pixel domain distributed video coding. In: EURASIP Conference on Speech and Image Processing, Multimedia Communications and Services. Slovak Republic (2005)

  17. Wang, H., Cheung, N.-M., Ortega, A.: A framework for adaptive scalable video coding using Wyner–Ziv techniques. EURASIP J. Appl. Signal Process. 2006, 1–18 (2006). doi:10.1155/ASP/2006/60971

  18. Qian, X., Zixiang, X.: Layered Wyner–Ziv video coding. IEEE Trans. Image Process. 15(12), 3791–3803 (2006)

    Article  MathSciNet  Google Scholar 

  19. Pedro, J.: Studying error resilience performance for a feedback channel based transform domain Wyner–Ziv video codec. In: Picture Coding Symposium 2007. Lisbon, Portugal (2007)

  20. Sehgal, A., Jagmohan, A., Ahuja, N.: Wyner–Ziv coding of video: an error-resilient compression framework. IEEE Trans. Multimed. 6(2), 249–258 (2004)

    Article  Google Scholar 

  21. Kubasov, D., Nayak, J., Guillemot, C.: Optimal reconstruction in Wyner–Ziv video coding with multiple side information. In: IEEE 9th Workshop on Multimedia Signal Processing, 2007. MMSP 2007 (2007)

  22. Puri, R., Majumdar, A., Ramchandran, K.: PRISM: a video coding paradigm with motion estimation at the decoder. IEEE Trans. Image Process. 16(10), 2436–2448 (2007)

    Article  MathSciNet  Google Scholar 

  23. Pradhan, S.S., Ramchandran, K.: Distributed source coding using syndromes (DISCUS): design and construction. IEEE Trans. Inf. Theory 49(3), 626–643 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Candes, E.J., Wakin, M.B.: An introduction to compressive sampling. IEEE Signal Process. Mag. 25(2), 21–30 (2008)

    Article  Google Scholar 

  25. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  26. Candes, E.J., Tao, T.: Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inf. Theory 52(12), 5406–5425 (2006)

    Article  MathSciNet  Google Scholar 

  27. Sampsell, J.B.: Digital micromirror device and its application to projection displays. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 12(6), 3242–3246 (1994)

    Article  Google Scholar 

  28. Li-Wei, K., Chun-Shein, L.: Distributed compressive video sensing. In: IEEE International Conference on Acoustics, Speech and SP, Taiwan, April 2009

  29. Do, T.T., et al.: Distributed compressed video sensing. In: 43rd Annual Conference on Information Sciences and Systems, 2009. CISS 2009 (2009)

  30. Chen H.W., Li-Wei, K., Chun-Shein, L.: Dynamic measurement rate allocation for distributed compressive video sensing. In: SPIE (2010)

  31. Duarte, M.F., et al.: Single-pixel imaging via compressive sampling. IEEE Signal Process. Mag. 25(2), 83–91 (2008)

    Article  MathSciNet  Google Scholar 

  32. Draft ITU-T Recommendation and Final Draft International Standard of Joint Video Specification. ITU-T Rec. H.264 and ISO/IEC 14496-10 AVC, 2003

  33. Kalva, H.: The H.264 video coding standard. IEEE Multimed. 13(4), 86–90 (2006)

    Article  Google Scholar 

  34. Burger, W., Burge, M.J.: The discrete cosine transform DCT, in principles of digital image processing, pp. 1–8. Springer, London (2009)

    Google Scholar 

  35. Sikora, T.: Trends and perspectives in image and video coding. Proc. IEEE 93(1), 6–17 (2005)

    Article  MathSciNet  Google Scholar 

  36. Figueiredo, M.A.T., Nowak, R.D., Wright, S.J.: Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE J. Sel. Topics Signal Process. 1(4), 586–597 (2007)

    Article  Google Scholar 

  37. Ostermann, J., et al.: Video coding with H.264/AVC: tools, performance, and complexity. IEEE Circuits Syst. Mag. 4(1), 7–28 (2004)

    Article  Google Scholar 

  38. H.264/AVC Software Coordination JM 18.2. http://iphome.hhi.de/suehring/tml/. Accessed 14 December 2011

  39. Gurun, S., Krintz, C., Wolski, R.: NWSLite: a general-purpose, nonparametric prediction utility for embedded systems. ACM Trans. Embed. Comput. Syst. 7(3), 1–36 (2008)

    Article  Google Scholar 

  40. TelosB Mote Specifications. http://www.memsic.com/. Accessed 14 December 2011

  41. Jurdak, R., Ruzzelli, A.G., O’Hare, G.: Adaptive radio modes in sensor networks: how deep to sleep? In: 5th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks, 2008. SECON ‘08 (2008)

  42. Schwieger, K., Fettweis, G.: Multi-hop transmission: benefits and deficits. In: Proc. GI/ITG Fachgespraech Sensornetze, pp. 26–27. Karlsruhe, Germany (2004)

  43. Shiwen, M., et al.: Multipath video transport over ad hoc networks. IEEE Wirel. Commun. 12(4), 42–49 (2005)

    Article  Google Scholar 

  44. Boluk, P.S., Baydere, S., Harmanci, A.E.: Robust image transmission over wireless sensor networks. Mob. Netw. Appl. 16(2), 149–170 (2011)

    Article  Google Scholar 

  45. Rappaport, T.S.: Wireless communications: principles and practice. Prentice Hall PTR, Englewood Cliffs (2002)

  46. Reijers, N., Halkes, G., Langendoen, K.: Link layer measurements in sensor networks. In: 2004 IEEE International Conference on Mobile Ad-hoc and Sensor Systems (2004)

  47. IEEE standard for part 15.4: Wireless MAC and PHY specifications for low rate WPAN, IEEE Std 802.15.4: New York

  48. Ahmad, J.J., Khan, H.A., Khayam, S.A.: Energy efficient video compression for wireless sensor networks. In: 43rd Annual Conference on Information Sciences and Systems, 2009. CISS 2009 (2009)

  49. Telos or Tmote Sky with CMUCam3. http://cmucam.org/wiki/telos_tmote. Accessed 14 December 2011

  50. AA—NiMH 2700mAh. http://datasheet.octopart.com/5030852-Ansmann-datasheet-5400527.pdf. Accessed 14 December 2011

  51. Kerasiotis, F., et al.: Battery lifetime prediction model for a WSN platform. In: 2010 Fourth International Conference on Sensor Technologies and Applications (SENSORCOMM) (2010)

  52. Margi, C.B., et al.: Characterizing energy consumption in a visual sensor network testbed. In: 2nd International Conference on Testbeds and Research Infrastructures for the Development of Networks and Communities, 2006. TRIDENTCOM 2006 (2006)

  53. Molina, J., Mora-Merchan, J.M., Barbancho, J., Leon, C.: Multimedia data processing and delivery in wireless sensor networks. In: Merrett, G.V., Tan, Y.K. (eds.) Wireless sensor networks: application-centric design. InTech (2010). http://www.intechopen.com/articles/show/title/multimedia-dataprocessing-and-delivery-in-wireless-sensor-networks-

  54. Kumar, K.V., Mohan, P.G.K.: Distributed video coding (dvc): challenges in implementation and practical usage. In: IP-based Electronics System Conference and Exhibition (IP-SOC) (2010)

  55. Pereira, F., et al.: Wyner–Ziv video coding: A review of the early architectures and further developments. In: 2008 IEEE International Conference on Multimedia and Expo (2008)

  56. Thomos, N., Boulgouris, N.V., Strintzis, M.G.: Optimized transmission of JPEG2000 streams over wireless channels. IEEE Trans. Image Process. 15(1), 54–67 (2006)

    Article  Google Scholar 

  57. Ju, W., Masilela, M., Liu, J.C.L.: supporting video data in wireless sensor networks. In: Ninth IEEE International Symposium on Multimedia, 2007. ISM 2007 (2007)

  58. Martinez, J.L., et al.: Wyner–Ziv to H.264 video transcoder. In: 16th IEEE International Conference on Image Processing (ICIP) (2009)

  59. Aiguo, Y., et al.: A fast video transcoder from Wyner–Ziv to AVS. In: Proceedings of the Advances in multimedia information processing, and 11th Pacific Rim conference on Multimedia: Part II, pp. 328–339. Springer-Verlag, Shanghai, China (2010)

  60. Peixoto, E., de Queiroz, R.L., Mukherjee, D.: A Wyner–Ziv video transcoder. IEEE Trans. on Circuits Syst. Video Technol. 20(2), 189–200 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noreen Imran.

Additional information

Communicated by T. Haenselmann.

This paper is an extended version of our previous work presented in IEEE PACRIM 2011 [1].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imran, N., Seet, BC. & Fong, A.C.M. A comparative analysis of video codecs for multihop wireless video sensor networks. Multimedia Systems 18, 373–389 (2012). https://doi.org/10.1007/s00530-012-0258-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-012-0258-0

Keywords

Navigation