Skip to main content
Log in

Comparison methods for a Keller–Segel-type model of pattern formations with density-suppressed motilities

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

This paper is concerned with global existence of classical solutions as well as occurrence of infinite-time blowups to the following fully parabolic system

$$\begin{aligned} {\left\{ \begin{array}{ll} u_t=\varDelta (\gamma (v)u)\\ v_t-\varDelta v+v=u \end{array}\right. } \end{aligned}$$
(1)

in a smooth bounded domain \(\varOmega \subset {\mathbb {R}}^n\), \(n\ge 1\) with no-flux boundary conditions. This model was recently proposed in Fu et al. (Phys Rev Lett 108:198102, 2012) and Liu et al. (Science 334:238, 2011) to describe the process of stripe pattern formations via the so-called self-trapping mechanism. The system features a signal-dependent motility function \(\gamma (\cdot )\), which is decreasing in v and will vanish as v tends to infinity. An essential difficulty in analysis comes from the possible degeneracy as \(v\nearrow \infty .\) In this work we develop a novel comparison method to tackle the degeneracy issue, which greatly differs from the conventional energy method in literature. An explicit point-wise upper-bound estimate for v is obtained for the first time, which shows that v(xt) grows point-wisely at most exponentially in time. An intrinsic mechanism is then unveiled that the finite-time degeneracy is prohibited in any spatial dimension with a generic decreasing \(\gamma \). With such new findings, we further study global existence of classical solutions when \(n\le 3\) and discuss uniform-in-time boundedness when \(\gamma (\cdot )\) decreases algebraically at large signal concentrations. Besides, a new critical-mass phenomenon in dimension two is observed if \(\gamma (v)=e^{-v}\). Indeed, we prove that the classical solution always exists globally and remains uniformly-in-time bounded in the sub-critical case, while in the super-critical case a blowup may take place in infinite time rather than finite time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahn, J., Yoon, C.: Global well-posedness and stability of constant equilibria in parabolic-elliptic chemotaxis systems without gradient sensing. Nonlinearity 32, 1327–1351 (2019)

    MathSciNet  MATH  Google Scholar 

  2. Amann, H.: Dynamic theory of quasilinear parabolic equations. II. Reaction-diffusion systems. Differ. Integr. Equ. 3, 13–75 (1990)

    MathSciNet  MATH  Google Scholar 

  3. Amann, H.: Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems. In: Function Spaces, Differential Operators and Nonlinear Analysis (Friedrichroda, 1992), 9–126, Teubner-Texte Mathematics, vol. 133. Teubner, Stuttgart (1993)

  4. Bellomo, N., Belouquid, A., Tao, Y., Winkler, M.: Toward a mathematical theory of Keller–Segel models of pattern formation in biology tissues. Math. Models Methods Appl. Sci. 25, 1663–1763 (2015)

    MathSciNet  MATH  Google Scholar 

  5. Blanchet, A., Carrillo, J.A., Masmoudi, N.: Infinite time aggregation for the critical Patlak–Keller–Segel model in \({\mathbb{R}}^2\). Commun. Pure Appl. Math. 61, 1449–1481 (2008)

    MATH  Google Scholar 

  6. Brézis, H., Strauss, W.: Semi-linear second-order elliptic equations in \(L^1\). J. Math. Soc. Jpn. 25, 565–590 (1973)

    MATH  Google Scholar 

  7. Cao, X.: Global bounded solutions of the higher-dimensional Keller–Segel system under smallness conditions in optimal spaces. Discrete Contin. Dyn. Syst. Ser. A 35, 1891–1904 (2015)

    MathSciNet  MATH  Google Scholar 

  8. Cieślak, T., Stinner, C.: New critical exponents in a fully parabolic quasilinear Keller–Segel system and applications to volume filling models. J. Differ. Equ. 258, 2080–2113 (2015)

    MathSciNet  MATH  Google Scholar 

  9. Desvillettes, L., Kim, Y.J., Trescases, A., Yoon, C.: A logarithmic chemotaxis model featuring global existence and aggregation. Nonlinear Anal. Real World Appl. 50, 562–582 (2019)

    MathSciNet  MATH  Google Scholar 

  10. Feireisl, E., Laurençot, Ph., Petzeltová, H.: On convergence to equilibria for the Keller–Segel chemotaxis model. J. Differ. Equ. 236, 551–569 (2007)

    MathSciNet  MATH  Google Scholar 

  11. Fu, X., Huang, L.H., Liu, C., Huang, J.D., Hwa, T., Lenz, P.: Stripe formation in bacterial systems with density-suppressed motility. Phys. Rev. Lett. 108, 198102 (2012)

    Google Scholar 

  12. Fujie, K., Jiang, J.: Global existence for a kinetic model of pattern formation with density-suppressed motilities. J. Differ. Equ. 269, 5338–5378 (2020)

    MathSciNet  MATH  Google Scholar 

  13. Fujie, K., Senba, T.: Global existence and boundedness of radial solutions to a two dimensional fully parabolic chemotaxis system with general sensitivity. Nonlinearity 29, 2417–2450 (2016)

    MathSciNet  MATH  Google Scholar 

  14. Fujie, K., Senba, T.: A sufficient condition of sensitivity functions for boundedness of solutions to a parabolic-parabolic chemotaxis system. Nonlinearity 31, 1639–1672 (2018)

    MathSciNet  MATH  Google Scholar 

  15. Fujie, K., Senba, T.: Blowup of solutions to a two-chemical substances chemotaxis system in the critical dimension. J. Differ. Equ. 266, 942–976 (2019)

    MathSciNet  MATH  Google Scholar 

  16. Gajewski, H., Zacharias, K.: Global behavior of a reaction-diffusion system modelling chemotaxis. Math. Nachr. 195, 77–114 (1998)

    MathSciNet  MATH  Google Scholar 

  17. Ghoul, T., Masmoudi, N.: Minimal mass blowup solutions for the Patlak–Keller–Segel equation. Commun. Pure Appl. Math. 71, 1957–2015 (2018)

    MathSciNet  MATH  Google Scholar 

  18. Hieber, M., Prüss, J.: Heat kernels and maximal \(L^p\) -\(L^q\) estimates for parabolic evolution equations. Commun. Partial Differ. Equ. 22, 1647–1669 (1997)

    MATH  Google Scholar 

  19. Horstmann, D.: Lyapunov functions and \(L^p\)-estimates for a class of reaction-diffusion systems. Colloq. Math. 87, 113–127 (2001)

    MathSciNet  MATH  Google Scholar 

  20. Horstmann, D., Wang, G.-F.: Blow-up in a chemotaxis model without symmetry assumptions. Eur. J. Appl. Math. 12, 159–177 (2001)

    MathSciNet  MATH  Google Scholar 

  21. Jiang, J., Zhang, Y.: On convergence to equilibria for a chemotaxis model with volume-filling effect. Asympt. Anal. 65, 79–102 (2009)

    MathSciNet  MATH  Google Scholar 

  22. Jiang, J.: Convergence to equilibria of global solutions to a degenerate quasilinear Keller–Segel system. Z. Angew. Math. Phys. 69, 130 (2018)

    MathSciNet  MATH  Google Scholar 

  23. Jin, H.Y., Kim, Y.J., Wang, Z.A.: Boundedness, stabilization, and pattern formation driven by density-suppressed motility. SIAM J. Appl. Math. 78, 1632–1657 (2018)

    MathSciNet  MATH  Google Scholar 

  24. Laurençot, Ph.: Global bounded and unbounded solutions to a chemotaxis system with indirect signal production. Discrete Contin. Dyn. Syst. Ser. B 24, 6419–6444 (2019)

    MathSciNet  MATH  Google Scholar 

  25. Liu, C., et al.: Sequential establishment of stripe patterns in an expanding cell population. Science 334, 238 (2011)

    Google Scholar 

  26. Lv, W., Wang, Q.: Global existence for a class of Keller–Segel models with signal-dependent motility and general logistic term. Evol. Equ. Control Theory (2020). https://doi.org/10.3934/eect.2020040

    Article  Google Scholar 

  27. Lv, W., Wang, Q.: A chemotaxis system with signal-dependent motility, indirect signal production and generalized logistic source: global existence and asymptotic stabilization. J. Math. Anal. Appl. 488, 124108 (2020)

    MathSciNet  MATH  Google Scholar 

  28. Lv, W., Wang, Q.: Global existence for a class of chemotaxis systems with signal-dependent motility, indirect signal production and generalized logistic source. Z. Angew. Math. Phys. 71, 51 (2020)

    MathSciNet  MATH  Google Scholar 

  29. Mizoguchi, N., Winkler, M.: Blowup in the two-dimensional Keller–Segel system. Preprint

  30. Nagai, T., Senba, T., Yoshida, K.: Application of the Trudinger–Moser inequality to a parabolic system of chemotaxis. Funkcialaj Ekvacioj 40, 411–433 (1997)

    MathSciNet  MATH  Google Scholar 

  31. Senba, T., Suzuki, T.: Some structures of the solution set for a stationary system of chemotaxis. Adv. Math. Sci. Appl. 10, 191–224 (2000)

    MathSciNet  MATH  Google Scholar 

  32. Senba, T., Suzuki, T.: Parabolic system of chemotaxis: blowup in a finite and the infinite time. Methods Appl. Anal. 8, 349–367 (2001)

    MathSciNet  MATH  Google Scholar 

  33. Tao, Y.S., Winkler, M.: Boundedness in a quasilinear parabolic–parabolic Keller–Segel system with subcritical sensitivity. J. Differ. Equ. 252, 692–715 (2012)

    MathSciNet  MATH  Google Scholar 

  34. Tao, Y.S., Winkler, M.: Critical mass for infinite-time aggregation in a chemotaxis model with indirect signal production. J. Eur. Math. Soc. (JEMS) 19, 3641–3678 (2017)

    MathSciNet  MATH  Google Scholar 

  35. Tao, Y.S., Winkler, M.: Effects of signal-dependent motilities in a Keller–Segel-type reaction-diffusion system. Math. Models Methods Appl. Sci. 27, 1645–1683 (2017)

    MathSciNet  MATH  Google Scholar 

  36. Taylor, M.E.: Partial Differential Equations III. Nonlinear Equations. Springer, Berlin (1996)

    Google Scholar 

  37. Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences, 68. Springer, New York (1988)

    Google Scholar 

  38. Wang, J., Wang, M.: Boundedness in the higher-dimensional Keller–Segel model with signal-dependent motility and logistic growth. J. Math. Phys. 60, 011507 (2019)

    MathSciNet  MATH  Google Scholar 

  39. Winkler, M.: Boundedness in the higher-dimensional parabolic–parabolic chemotaxis system with logistic source. Commun. Partial Differ. Equ. 35, 1516–1537 (2010)

    MathSciNet  MATH  Google Scholar 

  40. Winkler, M.: Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model. J. Differ. Equ. 248, 2889–2905 (2010)

    MathSciNet  MATH  Google Scholar 

  41. Winkler, M.: Finite-time blow-up in the higher-dimensional parabolic–parabolic Keller–Segel system. J. Math. Pures Appl. 100, 748–767 (2013)

    MathSciNet  MATH  Google Scholar 

  42. Winkler, M.: Global existence and slow grow-up in a quasilinear Keller–Segel system with exponentially decaying diffusivity. Nonlinearity 30, 735–764 (2017)

    MathSciNet  MATH  Google Scholar 

  43. Winkler, M.: Global classical solvability and generic infinite-time blow-up in quasilinear Keller–Segel systems with bounded sensitivities. J. Differ. Equ. 266, 8034–8066 (2019)

    MathSciNet  MATH  Google Scholar 

  44. Winkler, M.: Can simultaneous density-determined enhancement of diffusion and cross-diffusion foster boundedness in Keller–Segel type systems involving signal-dependent motilities? Nonlinearity 33, 6590–6623 (2020)

    MathSciNet  MATH  Google Scholar 

  45. Yoon, C., Kim, Y.J.: Global existence and aggregation in a Keller–Segel model with Fokker–Planck diffusion. Acta Appl. Math. 149, 101–123 (2017)

    MathSciNet  MATH  Google Scholar 

  46. Zheng, S.: Nonlinear Evolution Equations. Chapman & Hall/CRC, Boca Raton, FL (2004)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous referees for their valuable comments which greatly improved the exposition of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Jiang.

Additional information

Communicated by M. Del Pino.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

K. Fujie is supported by Japan Society for the Promotion of Science (Grant-in-Aid for Early-Career Scientists; No. 19K14576). J. Jiang is supported by Hubei Provincial Natural Science Foundation under the Grant No. 2020CFB602.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujie, K., Jiang, J. Comparison methods for a Keller–Segel-type model of pattern formations with density-suppressed motilities. Calc. Var. 60, 92 (2021). https://doi.org/10.1007/s00526-021-01943-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-021-01943-5

Mathematics Subject Classification

Navigation