Skip to main content
Log in

Fully anisotropic elliptic problems with minimally integrable data

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We investigate nonlinear elliptic Dirichlet problems whose growth is driven by a general anisotropic N-function, which is not necessarily of power-type and need not satisfy the \(\Delta _2\) nor the \(\nabla _2\)-condition. Fully anisotropic, non-reflexive Orlicz–Sobolev spaces provide a natural functional framework associated with these problems. Minimal integrability assumptions are detected on the datum on the right-hand side of the equation ensuring existence and uniqueness of weak solutions. When merely integrable, or even measure, data are allowed, existence of suitably further generalized solutions—in the approximable sense—is established. Their maximal regularity in Marcinkiewicz-type spaces is exhibited as well. Uniqueness of approximable solutions is also proved in case of \(L^1\)-data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, second edn. Academic Press, Amsterdam (2003)

    MATH  Google Scholar 

  2. Alberico, A.: Boundedness of solutions to anisotropic variational problems. Commun. Partial Differ. Equ. 36, 470–486 (2011). et Erratum et Corrigendum to: “Boundedness of solutions to anisotropic variational problems”. Commun. Partial Differ. Equ. 36, 470–486 (2011); Commun. Partial Differ. Equ. 41(2016), 877–878

    MathSciNet  MATH  Google Scholar 

  3. Alberico, A., di Blasio, G., Feo, F.: An eigenvalue problem for an anisotropic \({\Phi } \)–Laplacian. arXiv:1906.07593v2

  4. Alberico, A., di Blasio, G., Feo, F.: A priori estimates for solutions to anisotropic elliptic problems via symmetrization. Math. Nachr. 290, 986–1003 (2017)

    MathSciNet  MATH  Google Scholar 

  5. Alberico, A., Cianchi, A.: Comparison estimates in anisotropic variational problems. Manuscr. Math. 126, 481–503 (2008)

    MathSciNet  MATH  Google Scholar 

  6. Alvino, A., Ferone, V., Trombetti, G.: Estimates for the gradient of solutions of nonlinear elliptic equations with \(L^1\) data. Ann. Mat. Pura. Appl. 178, 129–142 (2000)

    MathSciNet  MATH  Google Scholar 

  7. Alvino, A., Mercaldo, A.: Nonlinear elliptic problems with \(L^1\) data: an approach via symmetrization methods. Mediterr. J. Math. 5, 173–185 (2008)

    MathSciNet  MATH  Google Scholar 

  8. Barletta, G., Cianchi, A.: Dirichlet problems for fully anisotropic elliptic equations. Proc. R. Soc. Edinb. Sect. A 147, 25–60 (2017)

    MathSciNet  MATH  Google Scholar 

  9. Baroni, P.: Riesz potential estimates for a general class of quasilinear equations. Calc. Var. Partial Differ. Equ. 53, 803–846 (2015)

    MathSciNet  MATH  Google Scholar 

  10. Beck, L., Mingione, G.: Lipschitz bounds and non-uniform ellipticity. Commun. Pure Appl. Math. (to appear)

  11. Bénilan, P., Boccardo, L., Gallouët, T., Gariepy, R., Pierre, M., Vázquez, J.-L.: An \(L^1\)-theory of existence and uniqueness of solutions of nonlinear elliptic equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 22, 241–273 (1995)

    MathSciNet  MATH  Google Scholar 

  12. Benkirane, A., Bennouna, J.: Existence of renormalized solutions for some elliptic problems involving derivatives of nonlinear terms in Orlicz spaces. In: Partial Differential Equations. Lecture Notes in Pure and Applied Mathematics, vol. 229, pp. 139–147. Dekker, New York (2002)

    MATH  Google Scholar 

  13. Bennett, C., Sharpley, R.: Interpolation of Operators. Academic Press, Boston (1988)

    MATH  Google Scholar 

  14. Boccardo, L., Gallouët, T.: Nonlinear elliptic and parabolic equations involving measure data. J. Funct. Anal. 87, 149–169 (1989)

    MathSciNet  MATH  Google Scholar 

  15. Boccardo, L., Gallouët, T., Marcellini, P.: Anisotropic equations in \(L^1\). Differ. Integral Equ. 9, 209–212 (1996)

    MATH  Google Scholar 

  16. Bogovskiĭ, M.E.: Solution of the first boundary value problem for an equation of continuity of an incompressible medium. Dokl. Akad. Nauk SSSR 248, 1037–1040 (1979)

    MathSciNet  Google Scholar 

  17. Carozza, M., Kristensen, J., Passarelli di Napoli, A.: Regularity of minimizers of autonomous convex variational integrals. Ann. Sc. Norm. Super. Pisa Cl. Sci. 13, 1065–1089 (2014)

    MathSciNet  MATH  Google Scholar 

  18. Carozza, M., Passarelli di Napoli, A.: Partial regularity for anisotropic functionals of higher order. ESAIM Control Optim. Calc. Var. 13, 692–706 (2007)

    MathSciNet  MATH  Google Scholar 

  19. Chlebicka, I.: A pocket guide to nonlinear differential equations in Musielak–Orlicz spaces. Nonlinear Anal. 175, 1–27 (2018)

    MathSciNet  MATH  Google Scholar 

  20. Chlebicka, I.: Gradient estimates for problems with Orlicz growth. Nonlinear Anal. (2018). https://doi.org/10.1016/j.na.2018.10.008

  21. Chlebicka, I.: Regularizing effect of the lower-order terms in elliptic problems with Orlicz growth. Israel J. Math. (to appear)

  22. Cianchi, A.: Boundedness of solutions to variational problems under general growth conditions. Commun. Partial Differ. Equ. 22, 1629–1646 (1997)

    MathSciNet  MATH  Google Scholar 

  23. Cianchi, A.: A fully anisotropic Sobolev inequality. Pac. J. Math. 196, 283–295 (2000)

    MathSciNet  MATH  Google Scholar 

  24. Cianchi, A.: Local boundedness of minimizers of anisotropic functionals. Ann. Inst. H. Poincaré Anal. Nonlinéaire 17, 147–168 (2000)

    MathSciNet  MATH  Google Scholar 

  25. Cianchi, A.: Optimal Orlicz–Sobolev embeddings. Rev. Mat. Iberoam. 20, 427–474 (2004)

    MathSciNet  MATH  Google Scholar 

  26. Cianchi, A.: Symmetrization in anisotropic elliptic problems. Commun. Partial Differ. Equ. 32, 693–717 (2007)

    MathSciNet  MATH  Google Scholar 

  27. Cianchi, A., Maz’ya, V.: Quasilinear elliptic problems with general growth and merely integrable, or measure, data. Nonlinear Anal. 164, 189–215 (2017)

    MathSciNet  MATH  Google Scholar 

  28. Dal Maso, A.: Approximated solutions of equations with \(L^1\) data. Application to the \(H\)-convergence of quasi-linear parabolic equations. Ann. Mat. Pura Appl. 170, 207–240 (1996)

  29. Dal Maso, G., Murat, F., Orsina, L., Prignet, A.: Renormalized solutions of elliptic equations with general measure data. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 28, 741–808 (1999)

  30. Dolzmann, G., Hungerbühler, N., Müller, S.: Uniqueness and maximal regularity for nonlinear elliptic systems of \(n\)-Laplace type with measure valued right hand side. J. Reine Angew. Math. 520, 1–35 (2000)

    MathSciNet  MATH  Google Scholar 

  31. Donaldson, T.K.: Nonlinear elliptic boundary value problems in Orlicz–Sobolev spaces. J. Differ. Equ. 10, 507–528 (1971)

    MathSciNet  MATH  Google Scholar 

  32. Donaldson, T.K., Trudinger, N.S.: Orlicz–Sobolev spaces and imbedding theorems. J. Funct. Anal. 8, 52–75 (1971)

    MathSciNet  MATH  Google Scholar 

  33. Dong, G., Fang, X.: Existence results for some nonlinear elliptic equations with measure data in Orlicz–Sobolev spaces. Bound. Value Probl. (2015). https://doi.org/10.1186/s13661-014-0278-0

  34. Elmahi, A., Meskine, D.: Elliptic inequalities with lower order terms and \(L^1\) data in Orlicz spaces. J. Math. Anal. Appl. 328, 1417–1434 (2007)

    MathSciNet  MATH  Google Scholar 

  35. Esposito, L., Leonetti, F., Mingione, G.: Sharp regularity for functionals with \((p, q)\) growth. J. Differ. Equ. 204, 5–55 (2004)

    MathSciNet  MATH  Google Scholar 

  36. Fiorenza, A., Sbordone, C.: Existence and uniqueness results for solutions of nonlinear equations with right-hand side in \(L^1\). Stud. Math. 127, 223–231 (1998)

    MATH  Google Scholar 

  37. Gossez, J.-P.: Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients. Trans. Am. Math. Soc. 190, 163–205 (1974)

    MathSciNet  MATH  Google Scholar 

  38. Gossez, J.-P.: Some approximation properties in Orlicz–Sobolev spaces. Stud. Math. 74, 17–24 (1982)

    MathSciNet  MATH  Google Scholar 

  39. Gwiazda, P., Skrzypczak, I., Zatorska-Goldstein, A.: Existence of renormalized solutions to elliptic equation in Musielak–Orlicz space. J. Differ. Equ. 264, 341–377 (2018)

    MathSciNet  MATH  Google Scholar 

  40. Gwiazda, P., Wittbold, P., Wróblewska, A., Zimmermann, A.: Renormalized solutions of nonlinear elliptic problems in generalized Orlicz spaces. J. Differ. Equ. 253, 635–666 (2012)

    MathSciNet  MATH  Google Scholar 

  41. Innamorati, A., Leonetti, F.: Global integrability for weak solutions to some anisotropic elliptic equations. Nonlinear Anal. 113, 430–434 (2015)

    MathSciNet  MATH  Google Scholar 

  42. Klimov, V.S.: Imbedding theorems and geometric inequalities. Izv. Akad. Nauk SSSR Ser. Mat. 40, 645–671 (in Russian); English translation: Math. USSR Izvestiya 10(1976), 615–638 (1976)

  43. Korolev, A.G.: On the boundedness of generalized solutions of elliptic differential equations with nonpower nonlinearities. Mat. Sb. 180, 78–100 (1989) (in Russian); English translation: Math. USSR-Sb. 66(1990), 83–106 (1989)

  44. Lieberman, G.: The natural generalization of the natural conditions of Ladyzhenskaya and Ural’tseva for elliptic equations. Commun. Partial Differ. Equ. 16, 311–361 (1991)

    MATH  Google Scholar 

  45. Lions, P.-L., Murat, F.: Sur les solutions renormalisées d’équations elliptiques non linéaires. Manuscript

  46. Marcellini, P.: Regularity and existence of solutions of elliptic equations with \(p, q\)-growth conditions. J. Differ. Equ. 90, 1–30 (1991)

    MathSciNet  MATH  Google Scholar 

  47. Mingione, G.: The Calderón–Zygmund theory for elliptic problems with measure data. Ann. Sc. Norm. Super. Pisa Cl. Sci. 6, 195–261 (2007)

    MathSciNet  MATH  Google Scholar 

  48. Mingione, G.: Gradient estimates below the duality exponent. Math. Ann. 346, 571–627 (2010)

    MathSciNet  MATH  Google Scholar 

  49. Mustonen, V., Tienari, M.: On monotone-like mappings in Orlicz–Sobolev spaces. Math. Bohem. 124, 255–271 (1999)

    MathSciNet  MATH  Google Scholar 

  50. Rakotoson, J.-M.: Uniqueness of renormalized solutions in a \(T\)-set for the \(L^1\)-data problem and the link between various formulations. Indiana Univ. Math. J. 43, 685–702 (1994)

    MathSciNet  MATH  Google Scholar 

  51. Rao, M.M., Ren, Z.D.: Theory of Orlicz Spaces. Marcel Dekker, New York (1991)

    MATH  Google Scholar 

  52. Rao, M.M., Ren, Z.D.: Applications of Orlicz Spaces. Marcel Dekker, New York (2002)

    MATH  Google Scholar 

  53. Serrin, J.: Pathological solutions of elliptic differential equations. Ann. Scuola Norm. Sup. Pisa 18, 385–387 (1964)

    MathSciNet  MATH  Google Scholar 

  54. Schappacher, G.: A notion of Orlicz spaces for vector valued functions. Appl. Math. 50, 355–386 (2005)

    MathSciNet  MATH  Google Scholar 

  55. Skaff, M.S.: Vector valued Orlicz spaces generalized \(N\)-functions, I. Pac. J. Math. 28, 193–206 (1969)

    MathSciNet  MATH  Google Scholar 

  56. Skaff, M.S.: Vector valued Orlicz spaces, II. Pac. J. Math. 28, 413–430 (1969)

    MathSciNet  MATH  Google Scholar 

  57. Stroffolini, B.: Global boundedness of solutions of anisotropic variational problems. Boll. Un. Mat. Ital. A 5, 345–352 (1991)

    MathSciNet  MATH  Google Scholar 

  58. Talenti, G.: Nonlinear elliptic equations, rearrangements of functions an Orlicz spaces. Ann. Mat. Pura Appl. 120, 159–184 (1979)

    MathSciNet  MATH  Google Scholar 

  59. Talenti, G.: Boundedness of minimizers. Hokkaido Math. J. 19, 259–279 (1990)

    MathSciNet  MATH  Google Scholar 

  60. Trudinger, N.S.: An imbedding theorem for \(H_{0}(G,\,\Omega )\) spaces. Stud. Math. 50, 17–30 (1974)

    Google Scholar 

  61. Vétois, J.: Existence and regularity for critical anisotropic equations with critical directions. Adv. Differ. Equ. 16, 61–83 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We wish to thank the referee for his careful reading of the paper, for his valuable comments.

Funding

This research was partly funded by: (i) Italian Ministry of University and Research (MIUR), Research Project Prin 2015 “Partial differential equations and related analytic-geometric inequalities”, No. 2015HY8JCC; (ii) GNAMPA of the Italian INdAM—National Institute of High Mathematics (Grant No. not available); (iii) NCN Polish Grant No. 2016/23/D/ST1/01072.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Cianchi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by N. Trudinger.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alberico, A., Chlebicka, I., Cianchi, A. et al. Fully anisotropic elliptic problems with minimally integrable data. Calc. Var. 58, 186 (2019). https://doi.org/10.1007/s00526-019-1627-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-019-1627-8

Mathematics Subject Classification

Navigation