Skip to main content
Log in

Sharp Rellich-Leray inequality for axisymmetric divergence-free vector fields

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper, we show the N-dimensional Rellich-Leray inequality with optimal constant for axisymmetric and divergence-free vector fields. This is a second-order differential version of the former work by Costin-Maz’ya (Calc Var Partial Differ Equ 32(4):523–532, 2008) on sharp Hardy–Leray inequality for such vector fields. In the proof of our main theorem, we show the vanishing of azimuthal components of axisymmetric vector fields for \(N\ge 4\), from which we also find a partial modification of the best constant derived in Costin-Maz’ya (Calc Var Partial Differ Equ 32(4):523–532, 2008).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brezis, H., Vázquez, J.L.: Blow-up solutions of some nonlinear elliptic problems. Rev. Mat. Univ. Complut. Madrid 10(2), 443–469 (1997)

    MathSciNet  MATH  Google Scholar 

  2. Caldiroli, P., Musina, R.: Rellich inequalities with weights. Calc. Var. Partial Differ. Equ. 45(1–2), 147–164 (2012)

    Article  MathSciNet  Google Scholar 

  3. Costin, O., Maz’ya, V.: Sharp Hardy-Leray inequality for axisymmetric divergence-free fields. Calc. Var. Partial Differ. Equ. 32(4), 523–532 (2008)

    Article  MathSciNet  Google Scholar 

  4. Efthimiou, C., Frye, C.: Spherical Harmonics in p Dimensions. World Scientific Publishing Company, Singapore (2014)

    Book  Google Scholar 

  5. Hamamoto, N., Takahashi, F.: Sharp Hardy-Leray and Rellich-Leray Inequalities for Curl-free Vector Fields (2018). arXiv:1808.09614v1 [math.AP]

  6. Hardy, G.H., Littlewood, J.E., Polya, G.: Inequalities. Cambridge University Press, Cambridge (1952)

    MATH  Google Scholar 

  7. Leray, J.: Étude de diverses équations intégrales non linéaires et de quelques problèmes que pose l’hydrodynamique. J. Math. Pures Appl. 12, 1–82 (1933)

    MATH  Google Scholar 

  8. Rellich, F.: Halbbeschränkte Differentialoperatoren höherer Ordnung. In: Erven P., Noordhoff N.V. (eds.) Proceedings of the International Congress of Mathematicians, vol. III, pp. 243–250. Amsterdam (1954). Groningen; North-Holland Publishing Co., Amsterdam (1956)

Download references

Acknowledgements

The author wish to thank Professor Futoshi Takahashi (Osaka City University) for his helpful advice and encouragement in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoki Hamamoto.

Additional information

Communicated by Y.Giga.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this appendix, we list up some technical lemmas with proofs.

Lemma 10

Let \(N\ge 2\). Let \(C_0^\infty ([0,\pi ])=\big \{\psi \in C^\infty ([0,\pi ])\ ;\ \psi (0)=\psi (\pi )=0 \big \}\) and let \(T=\partial _{{\theta }}D_{{\theta }}=\partial _{\theta }(\partial _ {\theta }+(N-2)\cot {\theta })\) be the second-rank derivative operator on \(C_0^\infty ([0,\pi ])\). Then the set of eigenvalues of \(-T\) is given by

$$\begin{aligned} Spec(-T)=\big \{\alpha _{\nu }=\nu (\nu +N-2)\ ; \ \nu \in {\mathbb {N}}\big \}. \end{aligned}$$

In addition, for every \(\nu \in {\mathbb {N}}\) there exists a polynomial \(P_{\nu -1}\) of degree \(\nu -1\) such that the function

$$\begin{aligned} \psi _\nu (\theta )=P_{\nu -1}(-\cos \theta )\sin \theta \end{aligned}$$

satisfies the \(\nu \)-th eigenequation \(-T\psi _\nu =\alpha _\nu \psi _\nu \). Moreover, the sequence of such functions \(\{\psi _\nu (\theta )\}_{\nu \in {\mathbb {N}}}\) spans a complete basis of the Hilbert space \(L^2\big ([0,\pi ],(\sin \theta )^{N-2}d\theta \big )\).

Proof

We first show that \(Spec(-T)\subset \{\alpha _\nu \ ;\ \nu \in {\mathbb {N}}\}\). To do so, let \(\psi \in C_0^\infty ([0,\pi ])\) and put \(\psi (\theta )=\phi (\theta )\sin \theta \). Then we can see the function \(\phi :[0,\pi ]\rightarrow {\mathbb {R}}\) is smooth in \((0,\pi )\) and continuous on \([0,\pi ]\), that is,

$$\begin{aligned}\phi \in C^\infty ((0,\pi ))\cap C([0,\pi ]).\end{aligned}$$

Also, by direct calculation we have

$$\begin{aligned} \begin{aligned} T\psi&=\partial _\theta \big (\partial _{\theta }+(N-2)\cot {\theta } \big )(\phi \sin {\theta })\\&=(\sin {\theta })\big ((\partial _\theta +N\cot \theta )\partial _ \theta -(N-1)\big )\phi . \end{aligned} \end{aligned}$$

Then we find that the eigenequation \(-T\psi =\alpha \psi \) for \(\alpha \in {\mathbb {R}}\) is equivalent to

$$\begin{aligned} - (\partial _\theta +N\cot \theta )\partial _\theta \phi =(\alpha -N+1)\phi . \end{aligned}$$
(47)

This is also equivalent to the eigenequation \(-\Delta _{{\mathbb {S}}^{N+1}}\phi =(\alpha -N+1)\phi \) for the Laplace-Beltrami operator \(\Delta _{{\mathbb {S}}^{N+1}}\) on \({\mathbb {S}}^{N+1}\) in the spherical polar coordinates \((\rho ,\theta _1,\ldots ,\theta _{N+1})\) with \(\theta _1=\theta \). By the well-known relation \(Spec(-\Delta _{{\mathbb {S}}^{N+1}})=\big \{\nu (\nu +N)\ ;\ \nu \in {\mathbb {N}}\cup \{0\}\big \}\), it then follows that

$$\begin{aligned} \begin{aligned} Spec(-T)&\subset \big \{\alpha \ ;\ \alpha -N+1\in Spec(-\Delta _{{\mathbb {S}}^{N+1}})\big \}\\&=\big \{\nu (\nu +N)+N-1\ ;\ \nu \in {\mathbb {N}}\cup \{0\}\big \}\\&=\big \{(\nu +1)(\nu +N-1)\ ;\ \nu \in {\mathbb {N}}\cup \{0\}\big \}=\{\alpha _\nu \ ;\ \nu \in {\mathbb {N}}\}. \end{aligned} \end{aligned}$$

To prove the inverse relation \(Spec(-T)\supset \{\alpha _\nu \ ;\ \nu \in {\mathbb {N}}\}\), it is enough to show the existence of a non-trivial solution to equation (47) for each \(\alpha =\alpha _\nu \), \(\nu \in {\mathbb {N}}\). To do this, we transform \(\theta \) to \(x=-\cos \theta \in [-1,1]\), whose differential obeys the chain rule \(\partial _\theta =(\sin \theta )\partial _x\). Then the derivative operator in the left-hand side of (47) can be written as

$$\begin{aligned} \begin{aligned} \big (\partial _\theta +N\cot \theta \big )\partial _\theta&= \big (\partial _\theta +N\cot \theta \big )(\sin \theta )\partial _x\\&=(\cos \theta )\partial _x+(\sin \theta )\partial _\theta \partial _x +N(\cos \theta )\partial _x\\&=(1-x^2)\partial _x^2-(N+1)x\partial _x. \end{aligned} \end{aligned}$$

Hence Eq. (47) is transformed into

$$\begin{aligned} (1-x^2)\partial _x^2\phi -(N+1)x\partial _x\phi +(\alpha -N+1)\phi =0. \end{aligned}$$
(48)

On the other hand, the p-dimensional Legendre Polynomial of degree \(\nu \in {\mathbb {N}}\cup \{0\}\) is given by the Rodrigues formula

$$\begin{aligned} P_\nu (x)=(1-x^2)^{(3-p)/2}\Big (\frac{d}{dx}\Big )^\nu (1-x^2)^{\nu +(p-3)/2}, \end{aligned}$$

(with the normalizing constant omitted,) which satisfies the equation

$$\begin{aligned} (1-x^2)P_\nu ''+(1-p)xP_\nu '+\nu (\nu +p-2)P_\nu =0. \end{aligned}$$

(See, e.g. [4].) Then it is easy to check for \(p=N+2\) and \(\nu \in \{0\}\cup {\mathbb {N}}\) that

$$\begin{aligned} \phi =P_\nu (x)=P_\nu (-\cos \theta ) \end{aligned}$$

is a solution to equation (48) or (47) with \(\alpha = \alpha _{\nu +1}\). Therefore, this shows that the function \(\psi _\nu (\theta )=P_{\nu -1}(-\cos \theta )\sin \theta \) for each \(\nu \in {\mathbb {N}}\) satisfies the eigenequation \(-T\psi _\nu =\alpha _{\nu }\psi _\nu \).

Finally, we show the completeness of \(\{\psi _\nu (\theta )\}_{\nu \in {\mathbb {N}}}\). The Weierstrass approximation theorem ensures that the sequence \(\{P_{\nu -1}(x)\}_{\nu \in {\mathbb {N}}}\) spans a dense subspace of \(C\big ([-1,1]\big )\) in the topology of uniform convergence. Then it immediately follows that \(\{\phi _\nu =P_{\nu -1}(-\cos \theta )\}_{\nu \in {\mathbb {N}}}\) also spans a dense subspace of \( C([0,\pi ])\). Moreover, this implies \(\{\psi _\nu =\phi _\nu (\theta )\sin \theta \}_{\nu \in {\mathbb {N}}}\) spans a dense subspace of \(C_0^\infty ([0,\pi ])\) in the topology of uniform convergence, because any \(\psi \in C_0^\infty ([0,\pi ])\) can be expressed as \(\psi (\theta )=\phi (\theta )\sin \theta \) for some \(\phi \in C([0,\pi ])\). Therefore, we see that the transitive relations

$$\begin{aligned} \mathrm{span}\{\psi _\nu \}\underset{\mathrm{dense}}{\subset } C_0^\infty \big ([0,\pi ]\big )\underset{\mathrm{dense}}{\subset } L^2\big ([0,\pi ]\big ) \end{aligned}$$

hold in the topology of \(L^2\big ([0,\pi ],d\theta \big )\), and hence in that of \(L^2\big ([0,\pi ],(\sin \theta )^{N-2} d\theta \big )\), which concludes the lemma. \(\square \)

Lemma 11

Let \(N\ge 3\) and \(\nu \in {\mathbb {N}}\). For any \(h\in C^\infty ({\mathbb {R}}_{\ge 0})\), let \({\varvec{u}}:{\mathbb {R}}^N\rightarrow {\mathbb {R}}^N\) be an axisymmetric vector field whose polar components for \(\rho >0\) are given by

$$\begin{aligned} \begin{aligned}&u_\rho (\rho ,\theta _1)=-h(\rho )D_{\theta _1}\psi _\nu (\theta _1)\ ,\quad \ u_{\theta _1}(\rho ,\theta _1)=\rho D_\rho h(\rho )\psi _\nu (\theta _1),\\&\quad \mathrm{and}\qquad u_{\theta _2}=\cdots =u_{\theta _{N-1}}=0\quad \mathrm{identically}. \end{aligned} \end{aligned}$$
(49)

Here \(\psi _\nu \) denotes the \(\nu \)-th eigenfunction of \(-\partial _{\theta _1}D_{\theta _1}\). Then \({\varvec{u}}\) is smooth and divergence-free in \({\mathbb {R}}^N\backslash \{{\varvec{0}}\}\). In particular, let

$$\begin{aligned} {\varvec{w}}=-{\varvec{e}}_\rho \rho ^{\nu -1}D_{\theta _1}\psi _\nu (\theta _1)+{\varvec{e}}_{\theta _1}\rho D_\rho \rho ^{\nu -1}\psi _\nu (\theta _1). \end{aligned}$$

Then \({\varvec{w}}\) is divergence-free and harmonic on \({\mathbb {R}}^N\).

Proof

First it is clear from (49) and Lemma 10 that \({\varvec{u}}\) satisfies (26) and (27), and hence \({\mathrm{div}}\,{\varvec{u}}=0\). Next we show that \(\Delta {\varvec{w}}={\varvec{0}}\) in \({\mathbb {R}}^N\backslash \{{\varvec{0}}\}\). By (15) and (16), we have

$$\begin{aligned} \begin{aligned} \rho ^2 \Delta {\varvec{w}}&=\rho ^2 D_\rho \partial _\rho {\varvec{w}}+\Delta _\sigma {\varvec{w}}=\alpha _{\nu -1}{\varvec{w}}+\Delta _\sigma {\varvec{w}}. \end{aligned} \end{aligned}$$

To show the vanishing of the right-hand side, abbreviating as \(\psi =\psi _\nu \) and \(T=\partial _{\theta _1}D_{\theta _1}\), we check by Lemma 5 that

$$\begin{aligned} \begin{aligned} -\Delta _\sigma ({\varvec{e}}_\rho D_{\theta _1}\psi )&=-2 {\varvec{e}}_{\theta _1}T\psi +{\varvec{e}}_\rho \big (-D_{\theta _1}T\psi +(N-1)D_{\theta _1}\psi \big )\\ {}&=2\alpha _{\nu } {\varvec{e}}_{\theta _1}\psi +{\varvec{e}}_\rho (\alpha _{\nu }+N-1)D_{\theta _1}\psi ,\\ \Delta _\sigma ({\varvec{e}}_{\theta _1}\psi )&=-2 {\varvec{e}}_\rho D_{\theta _1}\psi +{\varvec{e}}_{\theta _1}\big (N-3+T\big ) \psi \\&=-2 {\varvec{e}}_{\rho }D_{\theta _1}\psi +(N-\alpha _{\nu }-3){\varvec{e}}_{\theta _1}\psi . \end{aligned} \end{aligned}$$

Then we have

$$\begin{aligned} \begin{aligned} \Delta _\sigma {\varvec{w}}&=\Delta _\sigma \big (-{\varvec{e}}_\rho \rho ^{\nu -1}D_{\theta _1}\psi +{\varvec{e}}_{\theta _1}(\nu +N-2)\rho ^{\nu -1}\psi \big )\\&=\rho ^{\nu -1}\Big (-\Delta _\sigma ({\varvec{e}}_\rho D_{\theta _1}\psi )+(\nu +N-2)\Delta _\sigma ({\varvec{e}}_{\theta _1}\psi )\Big )\\&=\rho ^{\nu -1}\Big (\big (2\alpha _{\nu }+({\nu }+N-2) (N-\alpha _{\nu }-3)\big ){\varvec{e}}_{\theta _1}\psi \\&\quad +\big (\alpha _{\nu }+N-1-2({\nu }+N-2)\big ){\varvec{e}}_{\rho }D_{\theta _1}\psi \Big )\\&=-\alpha _{\nu -1}{\varvec{w}}. \end{aligned} \end{aligned}$$

Therefore, we obtain \(\rho ^2\Delta {\varvec{w}}={\varvec{0}}\), which implies the harmonicity of \({\varvec{w}}\) in \({\mathbb {R}}^N\backslash \{{\varvec{0}}\}\). Since \({\varvec{w}}\) is bounded near \({\varvec{0}}\), the (well-known) removal of singularity shows that \(\Delta {\varvec{w}}={\varvec{0}}\) on \({\mathbb {R}}^N\). \(\square \)

Corollary 12

Choose \(h\in C^\infty ({\mathbb {R}}_{\ge 0})\) to be such that \(h(\rho )= {\left\{ \begin{array}{ll} \rho ^{\nu -1} &{}\mathrm{for}\ 0\le \rho \le 1\\ 0&{} \mathrm{for}\ 2\le \rho \end{array}\right. }\). Then (49) satisfies \(\int _{{\mathbb {R}}^N}|\Delta {\varvec{u}}|^2|{\varvec{x}}|^{2\gamma }dx<\infty \) and \(\int _{{\mathbb {R}}^N}|{\varvec{u}}|^{2}|{\varvec{x}}|^{2\gamma -4}dx=\infty \) if \(\gamma \le 3-\frac{N}{2}-\nu \).

Lemma 13

Let \(({M}, \mu )\) be a measure space and let \(\xi _1, \xi _2: {M} \rightarrow {\mathbb {R}}\) be \(\mu \)-integrable functions such that \(\xi _1 > 0\) \(\mu \)-a.e.. Then we have

$$\begin{aligned} \frac{\int _{M} \xi _2 d\mu }{\int _{M} \xi _1 d\mu } \ge \mathrm{ess} \inf _{x \in {M}} \frac{\xi _2(x)}{\xi _1(x)}, \end{aligned}$$

where the equality holds if and only if \(\displaystyle -\infty <\mathrm{ess}\inf _{y\in {M}}\frac{\xi _2(y)}{\xi _1(y)}=\dfrac{\xi _2(x)}{\xi _1(x)}\)\(\mu \)-a.e. x.

Proof

Let \(I = \mathrm{ess} \, \inf _{x \in {M}} \frac{\xi _2(x)}{\xi _1(x)}\). Then \(\frac{\xi _2}{\xi _1} \ge I\) \(\mu \)-a.e. Multiplying both sides by \(\xi _1> 0\) , we have \(\xi _2\ge I \xi _1 \) \(\mu \)-a.e.. Integrating over M, we obtain

$$\begin{aligned} \int _{M} \xi _2 d\mu \ge I \int _{M} \xi _1 d\mu . \end{aligned}$$

Since \(\int _{M}\xi _1d\mu >0\), this leads the result:

$$\begin{aligned} \frac{\int _{M}\xi _2d\mu }{\int _{M}\xi _1d\mu }\ge I. \end{aligned}$$

Here the equality holds if \(-\infty < I=\frac{\xi _2}{\xi _1}\) \(\mu \)-a.e., because the same above argument with every “\(\ge \)” replaced by “\(=\)” also holds. Conversely if \(\frac{\int _{M}\xi _2d\mu }{\int _{M}\xi _1d\mu }= I\), then \(-\infty <I\) and

$$\begin{aligned} \int _{M}(\xi _2-I\xi _1) d\mu =0. \end{aligned}$$

Since \(\xi _2-I\xi _1\ge 0\)\(\mu \)-a.e., the integrand must vanish: \(\xi _2-I\xi _1=0\) \(\mu \)-a.e., which concludes the lemma. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamamoto, N. Sharp Rellich-Leray inequality for axisymmetric divergence-free vector fields. Calc. Var. 58, 149 (2019). https://doi.org/10.1007/s00526-019-1592-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-019-1592-2

Mathematics Subject Classification

Navigation