Skip to main content
Log in

On recovering parabolic diffusions from their time-averages

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

The paper study a possibility to recover a parabolic diffusion from its time-average when the values at the initial time are unknown. This problem can be reformulated as a new boundary value problem where a Cauchy condition is replaced by a prescribed time-average of the solution. It is shown that this new problem is well-posed in certain classes of solutions. The paper establishes existence, uniqueness, and a regularity of the solution for this new problem and its modifications, including problems with singled out terminal values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Beck, J.V.: Inverse Heat Conduction. Wiley, Hoboken (1985)

    MATH  Google Scholar 

  2. Bourgeois, L., Dardé, J.: A quasi-reversibility approach to solve the inverse obstacle problem. Inverse Prob. Imaging 4(3), 351–377 (2010)

    Article  MathSciNet  Google Scholar 

  3. Clark, G.W., Oppenheimer, S.F.: Quasireversibility methods for non-well posed problems. Electron. J. Differ. Equ. 8, 1–9 (1994)

    MathSciNet  MATH  Google Scholar 

  4. Dokuchaev, N.G.: Estimates for distances between first exit times via parabolic equations in unbounded cylinders. Probab. Theory Relat. Fields 129(2), 290–314 (2004)

    Article  MathSciNet  Google Scholar 

  5. Dokuchaev, N.: Parabolic equations with the second order Cauchy conditions on the boundary. J. Phys. A Math. Theor. 40, 12409–12413 (2007)

    Article  MathSciNet  Google Scholar 

  6. Dokuchaev, N.: Parabolic Ito equations with mixed in time conditions. Stoch. Anal. Appl. 26(3), 562–576 (2008)

    Article  MathSciNet  Google Scholar 

  7. Dokuchaev, N.: On prescribed change of profile for solutions of parabolic equations. J. Phys. A Math. Theor. 44, 225204 (2011)

    Article  MathSciNet  Google Scholar 

  8. Dokuchaev, N.: On forward and backward SPDEs with non-local boundary conditions. Discrete Contin. Dyn. Syst. Ser. A (DCDS-A) 35(11), 5335–5351 (2015)

    Article  MathSciNet  Google Scholar 

  9. Glasko, V.: Inverse Problems of Mathematical Physics. American Institute of Physics, New York (1984)

    MATH  Google Scholar 

  10. Háo, D.N.: Methods for Inverse Heat Conduction Problems. Peter Lang Verlag, Frankfurt/Main (1998)

    MATH  Google Scholar 

  11. Hao, D.N., Oanh, N.T.N.: Determination of the initial condition in parabolic equations from integral observations. Inverse Probl. Sci. Eng. 25(8), 1138–1167 (2017)

    Article  MathSciNet  Google Scholar 

  12. Ladyzhenskaya, O.A.: The Boundary Value Problems of Mathematical Physics. Springer, Berlin (1985)

    Book  Google Scholar 

  13. Ladyzhenskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasi-Linear Equations of Parabolic Type. American Mathematical Society, Providence (1968)

    Book  Google Scholar 

  14. Ladyzhenskaja, O.A., Ural’ceva, N.N.: Linear and Quasilinear Elliptic Equations. Academic Press, New York (1968)

    Google Scholar 

  15. Li, J., Yamamoto, M., Zou, J.: Conditional stability and numerical reconstruction of initial temperature. Commun. Pure Appl. Anal. 8, 361–382 (2009)

    MathSciNet  MATH  Google Scholar 

  16. Miller, K.: Stabilized quasi-reversibility and other nearly best possible methods for non-well-posed problems. In: Symposium on Non-Well-Posed Problems and Logarithmic Convexity. Lecture Notes in Mathematics Vol,. 316. Springer, Berlin, pp. 161–176 (1973)

  17. Miranker, W.L.: A well posed problem for the backward heat equation. Proc. Am. Math. Soc. 12(2), 243–274 (1961)

    Article  MathSciNet  Google Scholar 

  18. Prilepko, A.I., Orlovsky, D.G., Vasin, I.A.: Methods for Solving Inverse Problems in Mathematical Physics. Dekker, New York (1984)

    MATH  Google Scholar 

  19. Seidman, T.I.: Optimal filtering for the backward heat equation. SIAM J. Numer. Anal. 33, 162–170 (1996)

    Article  MathSciNet  Google Scholar 

  20. Showalter, R.E.: Cauchy problem for hyper-parabolic partial differential equations. In: Lakshmikantham, V. (ed.) Trends in the Theory and Practice of Non-Linear Analysis, pp. 421–425. Elsevier, North-Holland (1985)

    Google Scholar 

  21. Tikhonov, A.N., Arsenin, V.Y.: Solutions of Ill-Posed Problems. W. H. Winston, Washington (1977)

    MATH  Google Scholar 

  22. Triet, L.M., Phong, L.H.: Regularization and error estimates for asymmetric backward nonhomogenous heat equation in a ball. Electron. J. Differ. Equ. 2016(256), 1–12 (2016)

    Google Scholar 

  23. Triet, M.L., Quan, P.H., Trong, D.D., Tuan, N.H.: A backward parabolic equation with a time-dependent coefficient: regularization and error estimates. J. Comput. Appl. Math. 237, 432–441 (2013)

    Article  MathSciNet  Google Scholar 

  24. Tuan, N.H., Trong, D.D.: A simple regularization method for the ill-posed evolution equation. Czechoslov. Math. J. 61(1), 85–95 (2011)

    Article  MathSciNet  Google Scholar 

  25. Tuan, N.H., Trong, D.D.: On a backward parabolic problem with local Lipschitz source. J. Math. Anal. Appl. 414, 678–692 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolai Dokuchaev.

Additional information

Communicated by L. Caffarelli.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dokuchaev, N. On recovering parabolic diffusions from their time-averages. Calc. Var. 58, 27 (2019). https://doi.org/10.1007/s00526-018-1464-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-018-1464-1

Mathematics Subject Classification

Navigation