Skip to main content

Advertisement

Log in

The Moser–Trudinger inequality and its extremals on a disk via energy estimates

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We study the Dirichlet energy of non-negative radially symmetric critical points \(u_\mu \) of the Moser–Trudinger inequality on the unit disc in \(\mathbb {R}^2\), and prove that it expands as

$$\begin{aligned} 4\pi +\frac{4\pi }{\mu ^{4}}+o(\mu ^{-4})\le \int _{B_1}|\nabla u_\mu |^2dx\le 4\pi +\frac{6\pi }{\mu ^{4}}+o(\mu ^{-4}),\quad \text {as }\mu \rightarrow \infty , \end{aligned}$$

where \(\mu =u_\mu (0)\) is the maximum of \(u_\mu \). As a consequence, we obtain a new proof of the Moser–Trudinger inequality, of the Carleson–Chang result about the existence of extremals, and of the Struwe and Lamm–Robert–Struwe multiplicity result in the supercritical regime (only in the case of the unit disk). Our results are stable under sufficiently weak perturbations of the Moser–Trudinger functional. We explicitly identify the critical level of perturbation for which, although the perturbed Moser–Trudinger inequality still holds, the energy of its critical points converges to \(4\pi \) from below. We expect, in some of these cases, that the existence of extremals does not hold, nor the existence of critical points in the supercritical regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Actually the radial symmetry follows from positivity and the moving plane technique.

References

  1. Adams, D.: A sharp inequality of J. Moser for higher order derivatives. Ann. Math. 128, 385–398 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adimurthi, A.: Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the \(n\)-Laplacian. Ann. Sc. Norm. Sup. Pisa Ser. IV 17, 393–413 (1990)

    MathSciNet  MATH  Google Scholar 

  3. Adimurthi, A., Yang, Y.: Multibubble analysis on \(N\)-Laplace equation in \(\mathbb{R}^N\). Calc. Var. 40, 1–14 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Carleson, L., Chang, S.-Y.A.: On the existence of an extremal function for an inequality of J. Moser. Bull. Sci. Math. (2) 110, 113–127 (1986)

    MathSciNet  MATH  Google Scholar 

  5. del Pino, M., Musso, M., Ruf, B.: Beyond the Trudinger–Moser supremum. Calc. Var. Partial Differ. Equ. 44, 543–576 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Druet, O.: Multibumps analysis in dimension \(2\), quantification of blow-up levels. Duke Math. J. 132, 217–269 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Flucher, M.: Extremal functions for the Trudinger-Moser inequality in 2 dimensions. Comment. Math. Helv. 67(3), 471–497 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gilbarg, D., Trudinger, N.: Elliptic partial differential equations of second order. Springer, Berlin (2001). (Reprint of the 1998 edition)

    MATH  Google Scholar 

  9. Iula, S., Maalaoui, A., Martinazzi, L.: Critical points of a fractional Moser–Trudinger embedding in dimension 1. Differ. Integral Equ. 29, 455–492 (2016)

    MATH  Google Scholar 

  10. Lamm, T., Robert, F., Struwe, M.: The heat flow with a critical exponential nonlinearity. J. Funct. Anal. 257, 2951–2998 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Li, Y.: Extremal functions for the Moser–Trudinger inequalities on compact Riemannian manifolds. J. Sci. China Ser. A 48(5), 618–648 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Maalaoui, A., Martinazzi, L., Schikorra, A.: Blow-up behaviour of a fractional Adams–Moser–Trudinger type inequality in odd dimension. Commun. Partial Differ. Equ. doi:10.1080/03605302.2016.1222544

  13. Malchiodi, A., Martinazzi, L.: Critical points of the Moser–Trudinger functional on a disk. J. Eur. Math. Soc. (JEMS) 16, 893–908 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Martinazzi, L.: A threshold phenomenon for embeddings of \(H^m_0\) into Orlicz spaces. Calc. Var. Partial Differ. Equ. 36, 493–506 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Martinazzi, L., Struwe, M.: Quantization for an elliptic equation of order \(2m\) with critical exponential non-linearity. Math. Z. 270, 453–487 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Moser, J.: A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J. 20, 1077–1092 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  17. Pohozaev, S.I.: The Sobolev embedding in the case \(pl=n\). In: Proceedings of Technology Science Conference on Advance Science and Research 1964–1965, Mathematics Section, Moskov. Energet. Inst. Moscow, pp. 158–170 (1965)

  18. Pruss, A.R.: Nonexistence of maxima for perturbations of some inequalities with critical growth. Can. Math. Bull. 39, 227–237 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Robert, F., Struwe, M.: Asymptotic profile for a fourth order PDE with critical exponential growth in dimension four. Adv. Nonlinear Stud. 4, 397–415 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Struwe, M.: Critical points of embeddings of \(H^{1, n}_0\) into Orlicz spaces. Ann. Inst. H. Poincaré Anal. Non Linéaire 5, 425–464 (1984)

    Article  MathSciNet  Google Scholar 

  21. Struwe, M.: Quantization for a fourth order equation with critical exponential growth. Math. Z. 256, 397–424 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Trudinger, N.S.: On embedding into Orlicz spaces and some applications. J. Math. Mech. 17, 473–483 (1967)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the referee for some useful remarks that improved the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Mancini.

Additional information

Communicated by A. Chang.

The authors are supported by Swiss National Science Foundation, Project No. PP00P2-144669.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mancini, G., Martinazzi, L. The Moser–Trudinger inequality and its extremals on a disk via energy estimates. Calc. Var. 56, 94 (2017). https://doi.org/10.1007/s00526-017-1184-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-017-1184-y

Mathematics Subject Classification

Navigation