Skip to main content
Log in

Global \(C^{1,\alpha }\) regularity and existence of multiple solutions for singular p(x)-Laplacian equations

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper we study the following singular p(x)-Laplacian problem

$$\begin{aligned} \left\{ \begin{array}{l@{\quad }l} - \text{ div } \left( |\nabla u|^{p(x)-2} \nabla u\right) =\frac{ \lambda }{u^{\beta (x)}}+u^{q(x)}, &{} \text{ in }\quad \Omega , \\ u>0, &{} \text{ in }\quad \Omega , \\ u=0, &{} \text{ on }\quad \partial \Omega , \end{array}\right. \end{aligned}$$

where \(\Omega \) is a bounded domain in \(\mathbb {R}^N\), \(N\ge 2\), with smooth boundary \(\partial \Omega \), \(\beta \in C^1(\bar{\Omega })\) with \( 0< \beta (x) <1\), \(p\in C^1(\bar{\Omega })\), \(q \in C(\bar{\Omega })\) with \(p(x)>1\), \(p(x)< q(x) +1 <p^*(x)\) for \(x \in \bar{\Omega }\), where \( p^*(x)= \frac{Np(x)}{N-p(x)} \) for \(p(x) <N\) and \( p^*(x)= \infty \) for \( p(x) \ge N\). We establish \(C^{1,\alpha }\) regularity of weak solutions of the problem and strong comparison principle. Based on these two results, we prove the existence of multiple (at least two) positive solutions for a certain range of \(\lambda \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acerbi, E., Mingione, G.: Gradient estimates for the \(p(x)\)-Laplacean system. J. Reine Angew. Math. 584, 117–148 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ambrosetti, A., Brezis, H., Cerami, G.: Combined effects of concave and convex nonlinearities in some elliptic problems. J. Funct. Anal. 122, 519–543 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Byun, S., Ok, J.: On \(W^{1,q(\cdot )}\)-estimates for elliptic equations of \(p(x)\)-Laplacian type. J. Math. Pures Appl. (9) 106(3), 512–545 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Byun, S., Ok, J., Ryu, S.: Global gradient estimates for elliptic equations of \(p(x)\)-Laplacian type with BMO nonlinearity. J. Reine Angew. Math. 2016, 1–38 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Callegari, A., Nachman, A.: A nonlinear singular boundary value problem in the theory of pseudoplastic fluids. SIAM J. Appl. Math. 38, 275–281 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chayes, J.T., Osher, S.J., Ralston, J.V.: On singular diffusion equations with applications to self-organized criticality. Commun. Pure Appl. Math. 46, 1363–1377 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Crandall, M.G., Rabinowitz, P.H., Tartar, L.: On a Dirichlet problem with a singular nonlinearity. Commun. Partial Differ. Equ. 2, 193–222 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  9. Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, vol. 2017. Springer, Heidelberg (2011)

    Book  MATH  Google Scholar 

  10. Fan, X.: Global \(C^{1,\alpha }\) regularity for variable exponent elliptic equations in divergence form. J. Differ. Equ. 235, 397–417 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fan, X.: On the sub-supersolution method for \(p(x)\)-Laplacian equations. J. Math. Anal. Appl. 302, 665–682 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fan, X., Zhao, D.: A class of De Giorgi type and Hölder’s continuity. Nonlinear Anal. 36, 295–318 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fan, X., Zhao, D., Zhang, Q.: A strong maximum principle for \(p(x)\)-Laplace equations. Chin. J. Contemp. Math. 21(1), 1–7 (2000)

    Google Scholar 

  14. Fan, X., Zhang, Q., Zhao, D.: Eigenvalues of \(p(x)\)-Laplacian Dirichlet problem. J. Math. Anal. Appl. 302, 306–317 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fusco, N., Sbordone, C.: Some remarks on the regularity of minima of anisotropic integrals. Commun. Partial Differ. Equ. 18, 153–167 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ghergu, M., Rǎdulescu, V.D.: Singular Elliptic Problems: Bifurcation and Asymptotic Analysis, Oxford Lecture Series in Mathematics and its Applications, 37. Oxford University Press, Oxford (2008)

    Google Scholar 

  17. Ghoussoub, N., Preiss, D.: A general mountain pass principle for locating and classifying critical points. Ann. Inst. H. Poincaré Anal. Non Lineaire 6, 321–330 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  18. Giacomoni, J., Schindler, I., Takáč, P.: Sobolev versus Hölder local minimizers and existence of multiple solutions for a singular quasilinear equation. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) VI, 117–158 (2007)

    MATH  Google Scholar 

  19. Giacomoni, J., Schindler, I., Takáč, P.: Singular quasilinear elliptic systems and Hölder regularity. Adv. Differ. Equ. 20(3–4), 259–298 (2015)

    MATH  Google Scholar 

  20. Haitao, Y.: Multiplicity and asymptotic behavior of positive solutions for a singular semi linear elliptic problem. J. Differ. Equ. 189, 487–512 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Harjulehto, P., Hästö, P., Koskenoja, M.: Hardy’s inequality in variable exponent sobolev space. Georgian Math. J. 12(3), 431–442 (2005)

    MathSciNet  MATH  Google Scholar 

  22. Hirano, N., Saccon, C., Shioji, N.: Existence of multiple positive solutions for singular elliptic problems with concave and convex nonlinearities. Adv. Differ. Equ. 9, 197–220 (2004)

    MathSciNet  MATH  Google Scholar 

  23. Hernández, J., Mancebo, F., Vega, J.M.: On the linearization of some singular nonlinear elliptic problems and applications. Ann. Inst. H. Poincaré Anal. Non Linéaire 19, 777–813 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Takáč, P.: On the Fredholm alternative for the \(p\)-Laplacian at the first eigenvalue. Indiana Univ. Math. J. 51, 187–237 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Yijing, S., Shaoping, W., Yiming, L.: Combined effects of singular and superlinear nonlinearities in some singular boundary value problems. J. Differ. Equ. 176, 511–531 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Both authors thank an anonymous referee for suggesting a number of valuable improvements and corrections. S. Byun was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea Government (NRF-2015R1A2A1A15053024). E. Ko was partially supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea Government (NRF-2015R1A4A1A1041675).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eunkyung Ko.

Additional information

Communicated by P. Rabinowitz.

Appendix

Appendix

We show the Gâteaux differentiability of the energy functional \(E_\lambda \) at a point \(u \in W_0^{1,p(x)} (\Omega )\) satisfying \(u \ge \epsilon \phi _1\) in \(\Omega \) with a constant \(\epsilon >0\). The result for the singular term \(\int _\Omega u^{-\beta (x)}v ~dx\) is proved in a similar way as in [18].

Lemma 6.1

Let \(p(x)\le q(x)+1<p^*(x)\) for all \(x \in \bar{ \Omega }\). Assume that \(u,v \in W_0^{1,p(x)} (\Omega )\) and u satisfies \(u \ge \epsilon \phi _1\) in \(\Omega \) with a constant \(\epsilon >0\). Then we have

$$\begin{aligned} \lim _{t\rightarrow 0} \frac{E_\lambda (u+tv)-E_\lambda (u)}{t} = \int _\Omega |\nabla u|^{p(x)-2}\nabla u \cdot \nabla v~dx -\lambda \int _\Omega u^{-\beta (x)}v~dx -\int _\Omega u^{q(x)}v~dx. \end{aligned}$$
(6.1)

Proof

First, we easily see that

$$\begin{aligned} \frac{E_\lambda (u+tv)-E_\lambda (u)}{t}= & {} \int _\Omega \frac{1}{p(x)} \frac{ |\nabla u +t\nabla v|^{p(x) }-|\nabla u|^{p(x)} }{t}~dx \\&- \lambda \int _\Omega \frac{ 1}{1-\beta (x)} \frac{ ((u+tv)^+) ^{1-\beta (x)}-(u^+)^{1-\beta (x)}}{t}~dx\\&-\int _\Omega \frac{1}{1+q(x)} \frac{ (u+tv)^{q(x)+1}-u^{q(x)+1}}{t}~dx. \end{aligned}$$

For \(0< |t| <1\), by the mean value theorem, there exists \(\theta \in \mathbb {R}\) with \(0<|\theta |< |t|\) such that

$$\begin{aligned} \frac{1}{p(x)} \frac{ |\nabla u +t\nabla v|^{p(x) }-|\nabla u|^{p(x)} }{t}= & {} |\nabla u + \theta \nabla v|^{p(x)-2} (\nabla u +\theta \nabla v)\cdot \nabla v \\ \nonumber\le & {} |\nabla u +\theta \nabla v|^{p(x)-1} |\nabla v|\\ \nonumber\le & {} (|\nabla u|+ |\nabla v|)^{p(x)-1} |\nabla v|. \end{aligned}$$
(6.2)

Then by Lemma 5.4,

$$\begin{aligned} \int _\Omega \left( |\nabla u|+ |\nabla v|\right) ^{p\left( x\right) -1} |\nabla v| ~dx\le & {} 2 ~\Vert \left( |\nabla u|+|\nabla v|\right) ^{p\left( x\right) -1} \Vert _{p'\left( x\right) } \Vert \nabla v\Vert _{p\left( x\right) }\\= & {} 2 ~\Vert |\nabla u|+|\nabla v| \Vert _{p\left( x\right) } \Vert \nabla v\Vert _{p\left( x\right) }\\\le & {} 2^{p_+} \left( \Vert \nabla u\Vert _{p\left( x\right) }+\Vert \nabla v\Vert _{p\left( x\right) }\right) \Vert \nabla v\Vert _{p\left( x\right) }, \end{aligned}$$

where \(p'(x)= \frac{p(x)}{p(x)-1}\). Thus, \( (|\nabla u|+ |\nabla v|)^{p(x)-1} |\nabla v| \in L^1(\Omega )\). Now it follows from the dominated convergence theorem that

$$\begin{aligned}&\lim _{t\rightarrow 0} \int _\Omega \frac{1}{p(x)} \frac{ |\nabla u +t\nabla v|^{p(x) }-|\nabla u|^{p(x)} }{t}~dx\\&\quad = \int _\Omega \lim _{\theta \rightarrow 0} \left( |\nabla u + \theta \nabla v|^{p(x)-2} \left( \nabla u +\theta \nabla v\right) \cdot \nabla v \right) dx\\&\quad =\int _\Omega |\nabla u|^{p(x)-2}\nabla u \cdot \nabla v~dx. \end{aligned}$$

Likewise, we have that

$$\begin{aligned} \lim _{t\rightarrow 0 }\int _\Omega \frac{1}{1+q(x)} \frac{ (u+tv)^{q(x)+1}-u^{q(x)+1}}{t}~dx = \int _\Omega u^{q(x)}v~dx. \end{aligned}$$

To prove the result for the singular term \(\int _\Omega u^{-\beta (x) }v ~dx\), let us define

$$\begin{aligned} F(u)= \int _\Omega \frac{1}{1-\beta (x)} (u^+)^{1-\beta (x)} ~dx,~~ \text{ for }~u \in W^{1,p(x)}_0 (\Omega ). \end{aligned}$$

For \(\xi \in \mathbb {R}{\setminus } \{0\}\), we define

$$\begin{aligned} z(\xi ) = \frac{1}{1-\beta (x)} \frac{d}{d\xi }(\xi ^+)^{1-\beta (x)}= \left\{ \begin{array}{l@{\quad }l} \xi ^{-\beta (x)} &{} \text{ if }\quad \xi >0,\\ 0&{} \text{ if }\quad \xi <0. \end{array}\right. \end{aligned}$$

Consequently, we find

$$\begin{aligned} \frac{F(u+tv)-F(u)}{t}= \int _\Omega \left( \int _0^1 z(u+stv)~ds \right) v~ dx. \end{aligned}$$
(6.3)

Notice that for almost everywhere \(x \in \Omega \), we have \(u(x)>0\) and

$$\begin{aligned} \int _0^1 z(u(x)+stv(x))ds \rightarrow z(u(x))= u(x)^{-\beta (x)}~\text{ as }~t\rightarrow 0. \end{aligned}$$

Moreover,

$$\begin{aligned} \int _0^1 z(u(x)+stv(x))~ds\le & {} \int _0^1 |u(x)+stv(x) |^{-\beta (x)}ds\nonumber \\\le & {} c (\max _{0\le s \le 1 } |u(x)+stv(x)|)^{-\beta (x)}\nonumber \\\le & {} c u^{-\beta (x)} \le C_\beta (\epsilon \phi _1)^{-\beta (x)} \le c \phi _1^{-\beta (x)}, \end{aligned}$$
(6.4)

with a constant \(c=c(\beta ,\epsilon )\) independent of \(x \in \Omega \). Indeed, for the second inequality in (6.4), we refer to the following inequality (Lemma A.1 in [24]): if \(0<\delta <1\), then there exists \(c=c(\delta )>0\) such that

$$\begin{aligned} \int _0^1 |a+sb|^{-\delta } ds \le c \left( \max _{0\le s\le 1} |a+sb|\right) ^{-\delta }, \end{aligned}$$

for all \(a,b \in \mathbb {R}\) with \(|a|+|b|>0\). Finally, we observe from Hölder’s inequality and Lemma 2.7 that

$$\begin{aligned} \int _\Omega v\phi _1^{-\beta (x)} dx \le C_\epsilon \int _\Omega \frac{v}{d(x)} d(x)^{1-\beta } dx \le 2C_\epsilon \left\| \frac{v}{d(x)} \right\| _{p(x)} \Vert d(x)^{1-\beta (x)}\Vert _{p'(x)} \le \tilde{C} \Vert \nabla v \Vert _{p(x)}, \end{aligned}$$

to discover that \(v\phi _1 \in L^1(\Omega )\). Hence, from the dominated convergence theorem, we get

$$\begin{aligned} \lim _{t\rightarrow 0} \int _\Omega \frac{ 1}{1-\beta (x)} \frac{ ((u+tv)^+)^{1-\beta (x)}-(u^+)^{1-\beta (x)}}{t}~dx= \int _\Omega u^{-\beta (x)}v~dx. \end{aligned}$$

\(\square \)

We now know that the energy functional \(E_\lambda :W_0^{1,p(x)}(\Omega ) \rightarrow \mathbb {R}\) is Gâteaux-differentiable at every point \(u \in W_0^{1,p(x)}(\Omega )\) satisfying \(u \ge \epsilon \phi _1\) in \(\Omega \) with a constant \(\epsilon >0\). Its Gâteaux derivative \(E'_\lambda (u) \) at u is given by

$$\begin{aligned} <E'_\lambda (u),v>= & {} \int _\Omega |\nabla u|^{p(x)-2}\nabla u \cdot \nabla v~dx -\lambda \int _\Omega u^{-\beta (x)}v~dx\nonumber \\&-\int _\Omega u^{q(x)}v~dx~~~\text{ for } ~v\in W^{1,p(x)}_0(\Omega ). \end{aligned}$$
(6.5)

Now we prove the \(C^1\) differentiability of the cut off energy functional. The proof is similar to the one in [18]. For the reader’s convenience, we here provide details of its proof.

Lemma 6.2

Let \(p(x) \le q(x)+1<p^*(x)\) for all \(x \in \bar{ \Omega }\) and \(w \in W_0^{1,p(x)} (\Omega )\) such that \(w \ge \epsilon \phi _1\) in \(\Omega \) for some \(\epsilon >0\). Define \(f_\lambda : \Omega \times \mathbb {R} \rightarrow \mathbb {R}\) such that

$$\begin{aligned} f_\lambda (x,s)= \left\{ \begin{array}{l@{\quad }l} \lambda s^{-\beta (x)}+ s^{q(x)}&{}\text{ if }\quad s\ge w(x),\\ \lambda w(x)^{-\beta (x)} +w(x)^{q(x)}&{}\text{ if }\quad s< w(x), \end{array} \right. \end{aligned}$$
(6.6)

\(F_\lambda (x,s) =\int _0^s f_\lambda (x,t)~dt\), and for \(u \in W_0^{1,p(x)}(\Omega )\),

$$\begin{aligned} \overline{E}_\lambda (u) =\int _\Omega \frac{1}{p(x)} |\nabla u|^{p(x)} dx - \int _\Omega F_\lambda (x,u) ~dx. \end{aligned}$$

Then \( \overline{E}_\lambda \) belongs to \(C^1(W_0^{1,p(x)}(\Omega ),\mathbb {R})\).

Proof

We prove the result only for the singular term, as the two other terms are treated in a standard way. Set

$$\begin{aligned} h(x,t)= {\left\{ \begin{array}{ll} t^{-\beta (x)},\quad \text{ if }\quad t \ge w(x),\\ w(x)^{-\beta (x)},\quad \text{ if }\quad t< w(x), \end{array}\right. } \end{aligned}$$

\(H(x,t)= \int _0^t h(x,s)ds\), and \(G(u)= \int _\Omega H(x,u)dx\). As in Lemma 6.1, we have that for all \(u \in W^{1,p(x)}_0(\Omega )\), Gâteaux derivative \(G'(u)\) exists and is given by

$$\begin{aligned} <G'(u),v>= \int _\Omega (\max \{u(x),w(x) \})^{-\beta (x)}v(x) dx. \end{aligned}$$

Let \(u_k,u_0 \in W^{1,p(x)}_0(\Omega )\) such that \(u_k \rightarrow u_0\) in \(W^{1,p(x)}_0(\Omega ).\) Then

$$\begin{aligned} |<G'(u_k)-G'(u_0),v>|= & {} \left| \int _\Omega [ (\max \{u_k(x),w(x) \}) ^{-\beta (x)}v(x) \right. \\&\left. - (\max \{u_0(x),w(x) \})^{-\beta (x)}v(x) ] ~dx \right| \\\le & {} 2 \int _\Omega w^{-\beta (x)} |v|dx\\\le & {} 2 C_\epsilon \int _\Omega \phi _1^{-\beta (x)} |v|dx, \end{aligned}$$

for all \(v\in W^{1,p(x)}_0(\Omega )\). Again as in Lemma 6.1, we get \(\phi _1^{-\beta (x)} v \in L^1(\Omega )\), and so by Lebesgue’s dominated convergence theorem, we conclude that the Gâteaux derivative of G is continuous, which implies that \(G \in C^1(W_0^{1,p(x)}(\Omega ),\mathbb {R})\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Byun, SS., Ko, E. Global \(C^{1,\alpha }\) regularity and existence of multiple solutions for singular p(x)-Laplacian equations. Calc. Var. 56, 76 (2017). https://doi.org/10.1007/s00526-017-1152-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-017-1152-6

Mathematics Subject Classification

Navigation