Skip to main content
Log in

Stability of the traveling waves for the derivative Schrödinger equation in the energy space

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper, we continue the study of the dynamics of the traveling waves for nonlinear Schrödinger equation with derivative (DNLS) in the energy space. Under some technical assumptions on the speed of each traveling wave, the stability of the sum of two traveling waves for DNLS is obtained in the energy space by Martel–Merle–Tsai’s analytic approach in Martel et al. (Commun Math Phys 231(2):347–373, 2002, Duke Math J 133(3):405–466, 2006). As a by-product, we also give an alternative proof of the stability of the single traveling wave in the energy space in Colin and Ohta (Ann Inst Henri Poincaré Anal Non Linéaire 23(5):753–764, 2006), where Colin and Ohta made use of the concentration-compactness argument.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Here the minimum action functional \(J_{\omega ,c}\) and the scaling derivative functional \(K_{\omega ,c}\) are defined in \(H^1(\mathbb {R})\) as following

    $$\begin{aligned} J_{\omega ,c}(\varphi )\triangleq&\; E(\varphi )+\omega M(\varphi )+c P(\varphi ),\\ K_{\omega ,c}\left( {\varphi }\right) \triangleq&\; \int \left( {\left| {\varphi _x}\right| ^2-\frac{3}{16}\left| {\varphi }\right| ^6+\omega \left| {\varphi }\right| ^2 - c\mathfrak {I}\left( {\overline{\varphi }\varphi _x}\right) +\frac{c}{2}\left| {\varphi }\right| ^4 }\right) dx. \end{aligned}$$
  2. For \((\omega ,c)\in \mathbb {R}^2\), we have characterized all solutions for (1.8) in Theorem 1.2.

  3. Of course, \(\omega (t)\) and c(t) are related to the mass and momentum of the corresponding traveling wave at time t.

  4. By the assumption (c) in Theorem 1.6, we know that \(c^0_1< \sigma < c^0_2\).

  5. Here we throw away the first term for \(\sigma >0\) because of \(c^0_2>c^0_1>0\) and \(\omega ^0_2>\omega ^0_1\). In general case, we cannot use the estimate in Lemma 5.2 since the resulted decay in t is just \((t+a)^{-1}\), which is non-integral(critical).

  6. It is easy to verify that \(c_{1}^{0}<\sigma _{\pm ,0},\; \sigma _{0,\pm } <c_{2}^{0}\) by assumption (c) in Theorem 1.6.

References

  1. Ambrosetti, A., Malchiodi, A.: Nonlinear Analysis and Semilinear Elliptic Problems, Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  2. Berestycki, H., Lions, P.L.: Nonlinear scalar field equations, I: existence of a ground state. Arch. Ration Mech. Anal. 82(4), 313–345 (1983)

    MathSciNet  MATH  Google Scholar 

  3. Biagioni, H., Linares, F.: Ill-posedness for the derivative Schrödinger and generalized benjamin-ono equations. Trans. Am. Math. Soc. 353(9), 3649–3659 (2001)

    Article  MATH  Google Scholar 

  4. Cazenave, T.: Semilinear Schrödinger Equations. Courant Institute of Mathematical Sciences, vol. 10. American Mathematical Society, Providence (2003)

    Google Scholar 

  5. Cazenave, T., Lions, P.: Orbital stabilty of standing waves for some nonlinear Schrödinger equations. Commun. Math. Phys. 85(4), 549–561 (1982)

    Article  MATH  Google Scholar 

  6. Colin, M., Ohta, M.: Stability of solitary waves for derivative nonlinear Schrödinger equation. Ann. Inst. Henri Poincaré Anal. Non Linéaire 23(5), 753–764 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: Global well-posedness for Schrödinger equations with derivative. SIAM J. Math. Anal. 33(3), 649–669 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: A refined global well-posedness result for Schrödinger equations with derivative. SIAM J. Math. Anal. 34(1), 64–86 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. El Dika, K., Martel, Y.: Stability of \( N \) solitary waves for the generalized BBM equations. Dyn. Partial Differ. Equ. 1(4), 401–437 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Grillakis, M., Shatah, J., Strauss, W.: Stability theory of solitary waves in the presence of symmetry, I. J. Funct. Anal. 74(1), 160–197 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  11. Guo, B., Wu, Y.: Orbital stability of solitary waves for the nonlinear derivative Schrödinger equation. J. Differ. Equ. 123(1), 35–55 (1995)

    Article  MATH  Google Scholar 

  12. Hayashi, N.: The initial value problem for the derivative nonlinear Schrödinger equation in the energy space. Nonlinear Anal. 20(7), 823–833 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hayashi, N., Ozawa, T.: On the derivative nonlinear Schrödinger equation. Phys. D 55(1–2), 14–36 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hayashi, N., Ozawa, T.: Finite energy solutions of nonlinear Schrödinger equations of derivative type. SIAM J. Math. Anal. 25(6), 1488–1503 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kaup, D.J., Newell, A.C.: An exact solution for a derivative nonlinear Schrödinger equation. J. Math. Phys. 19(4), 798–801 (1978)

    Article  MATH  Google Scholar 

  16. Le Coz, S., Wu, Y.: Stability of multi-solitons for the derivative nonlinear Schrödinger equation. arXiv:1609.04589 (2016)

  17. Lieb, E., Loss, M.: Analysis. Graduate Studies in Mathematics, vol. 14. American Mathematical Society, Providence (2001)

    Google Scholar 

  18. Liu, J., Perry, P., Sulem, C.: Global existence for the derivative nonlinear Schrödinger equation by the method of inverse scattering. arXiv:1511.01173 (2015)

  19. Martel, Y., Merle, F.: Instability of solitons for the critical generalized Kortewegde Vries equation. Geom. Funct. Anal. 11(1), 74–123 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Martel, Y., Merle, F., Tsai, T.P.: Stability and asymptotic stability for subcritical gKdV equations. Commun. Math. Phys. 231(2), 347–373 (2002)

    Article  MATH  Google Scholar 

  21. Martel, Y., Merle, F., Tsai, T.P.: Stability in \(H^1\) of the sum of \(K\) solitary waves for some nonlinear Schrödinger equations. Duke Math. J. 133(3), 405–466 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Miao, C., Tang, X., Xu, G.: Solitary waves for nonlinear Schrödinger equation with derivative. arXiv:1702.07853 (2015)

  23. Miao, C., Wu, Y., Xu, G.: Global well-posedness for Schrödinger equation with derivative in \(H^{\frac{1}{2}} (\mathbb{R})\). J. Differ. Equ. 251(8), 2164–2195 (2011)

    Article  MATH  Google Scholar 

  24. Mio, K., Ogino, T., Minami, K., Takeda, S.: Modified nonlinear Schrödinger equation for Alfvén waves propagating along the magnetic field in cold plasmas. J. Phys. Soc. Jpn. 41(1), 265–271 (1976)

    Article  MATH  Google Scholar 

  25. Mjølhus, E.: On the modulational instability of hydromagnetic waves parallel to the magnetic field. J. Plasma Phys. 16, 321–334 (1976)

    Article  Google Scholar 

  26. Munõz, C.: Stability of integrable and nonintegrable structures. Adv. Differ. Equ. 19(9/10), 947–996 (2014)

    MathSciNet  MATH  Google Scholar 

  27. Ozawa, T.: On the nonlinear Schrödinger equations of derivative type. Indiana Univ. Math. J. 45, 137–164 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  28. Pava, J.: Nonlinear Dispersive Equations: Existence and Stability of Solitary and Periodic Travelling Wave Solutions, Mathematical Surveys and Monographs. American Mathematical Society, Providence (2009)

    Book  MATH  Google Scholar 

  29. Pelinovsky, D.E., Shimabukuro, Y.: Existence of global solutions to the derivative NLS equation with the inverse scattering transform method. arXiv:1602.02118 (2016)

  30. Reed, M., Simon, B.: Methods of Modern Mathematical Physics: Analysis of Operators, vol. IV. Academic Press, Cambridge (1978)

    MATH  Google Scholar 

  31. Sulem, C., Sulem, P.: The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse, Applied Mathematical Sciences, vol. 139. Springer, New York (2007)

    MATH  Google Scholar 

  32. Takaoka, H.: Well-posedness for the one-dimensional nonlinear Schrödinger equation with the derivative nonlinearity. Adv. Differ. Equ. 4(4), 561–580 (1999)

    MATH  Google Scholar 

  33. Takaoka, H.: Global well-posedness for Schrödinger equations with derivative in a nonlinear term and data in low-order sobolev spaces. Electron. J. Differ. Equ. 2001(42), 1–23 (2001)

    MATH  Google Scholar 

  34. Tao, T.: Why are solitons stable? Bull. Am. Math. Soc. 46(1), 1–33 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. van Saarloos, W., Hohenberg, P.: Fronts, pulses, sources and sinks in generalized complex ginzburg-landau equations. Phys. D 56(4), 303–367 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  36. Weinstein, M.I.: Nonlinear Schrödinger equations and sharp interpolation estimates. Commun. Math. Phys. 87(4), 567–576 (1983)

    Article  MATH  Google Scholar 

  37. Weinstein, M.I.: Modulational stability of ground states of nonlinear Schrödinger equations. SIAM J. Math. Anal. 16(3), 472–491 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  38. Weinstein, M.I.: Lyapunov stability of ground states of nonlinear dispersive evolution equations. Commun. Pure Appl. Math. 39(1), 51–67 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  39. Willem, M.: Minimax Theorems. Progress in Nonlinear Differential Equations and Their Applications, vol. 24. Birkhäuser, Boston (2012)

    Google Scholar 

  40. Wu, Y.: Global well-posedness on the derivative nonlinear Schrödinger equation. Anal. PDE 8(5), 1101–1112 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referee for his/her valuable comments and suggestions to help us to improve this paper. A few months after we submitted our paper, S. Le Coz and Y. Wu obtained the stability of a k-soliton solution of (DNLS) independently in [16]. The authors were partially supported by the NSF grant of China and partially supported by Beijing Center of Mathematics and Information Interdisciplinary Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guixiang Xu.

Additional information

Communicated by A. Malchiodi.

Appendices

Appendix 1: The coercivity of the quadratic term

In this appendix, we prove Proposition 2.1. The proof of Part (1) is the same as that in Proposition 2.8 (a) [37]. As for Part (2), the proof is divided into several steps.

Step 1: Spectral decomposition. First of all, it follows from the exponential decay of \(\phi _{\omega ,c}\) that \(\mathcal {L}_{+}\) is a relatively compact perturbation of the operator \(-\frac{1}{2} \partial _{x}^{2} + \frac{1}{2}\left( \omega -\frac{c^{2}}{4}\right) .\) By Weyl’s theorem in [30], we obtain that the essential spectrum of \(\mathcal {L}_{+}\) on \(L^{2}\left( {\mathbb {R}}\right) \) is

$$\begin{aligned} \sigma _{\mathrm {ess}}\left( { \mathcal {L}_{+} }\right)&=\sigma _{\mathrm {ess}}\left( { -\frac{1}{2}\partial _{x}^{2} + \frac{1}{2}\left( \omega -\frac{c^{2}}{4}\right) }\right) = \left[ \frac{1}{2}\left( \omega -\frac{c^{2}}{4}\right) ~,~+\infty \right) . \end{aligned}$$

Moreover, all spectrum below the lower bound of the essential spectrum are either an isolated point of \(\sigma \left( { \mathcal {L}_{+} }\right) \) or an eigenvalue of finite multiplicity of \(\mathcal {L}_{+}.\)

Next, since \(\phi _{\omega ,c}\) satisfies

$$\begin{aligned} \left( \omega -\frac{c^2}{4}\right) \phi _{\omega ,c} - \partial ^2_x \phi _{\omega ,c}-\frac{3}{16}\phi _{\omega ,c}^{5} = - \frac{c}{2}\phi _{\omega ,c}^{3}\;, \end{aligned}$$
(6.25)

then by differentiating equation (6.25) with respect to x,  we obtain

$$\begin{aligned} \mathcal {L}_{+}\partial _x \phi _{\omega ,c} =0. \end{aligned}$$
(6.26)

Therefore, by \(\partial _x \phi _{\omega ,c}\in L^{2}(\mathbb {R}),\) we obtain from (6.26) that 0 is an eigenvalue of \(\mathcal {L}_{+}.\) By a classical ODE argument as in [37], we obtain

$$\begin{aligned} \ker \mathcal {L}_{+} = \mathrm {span}\left\{ ~\partial _x \phi _{\omega ,c}~\right\} . \end{aligned}$$
(6.27)

Thus, it follows from Sturm-Liouville theory that 0 is the second eigenvalue of \(\mathcal {L}_{+},\) and moreover \(\mathcal {L}_{+}\) enjoys only one negative eigenvalue \(-\lambda ^2_{1}\) with a \(L^{2}(\mathbb {R})\) normalized eigenfunction \(\chi .\) More precisely, we have

$$\begin{aligned} \mathcal {L}_{+}\chi = -\lambda ^2_{1}\chi \quad \text {with }\quad \Vert \chi \Vert _{2}=1. \end{aligned}$$
(6.28)

Now, define

$$\begin{aligned} \mu \triangleq&\inf ~\left\{ { \frac{\left( \,{\mathcal {L}_{+}\psi }\, ,\,{\psi }\,\right) }{\left( \,{ \psi }\, ,\,{\psi }\,\right) } ~:~ \psi \in L^2(\mathbb {R}), ~~ \left( \,{\psi }\, ,\,{\chi }\,\right) = \left( \,{\psi }\, ,\,{\partial _x\phi _{\omega ,c}}\,\right) = 0~ }\right\} , \end{aligned}$$
(6.29)

then by a classical variational argument, it is easy to see that \(\mu >0.\) Therefore, the space \(L^{2}(\mathbb {R})\) can be decomposed as a direct sum as follows

$$\begin{aligned} L^{2}=N\bigoplus \ker \mathcal {L}_{+} \bigoplus P, \end{aligned}$$
(6.30)

where \(N=\mathrm {span}\left\{ ~\chi ~\right\} ,\) \(\ker \mathcal {L}_{+}\) is defined by (6.27), and P is a closed subspace of \(L^{2}\) such that

$$\begin{aligned} \left( \,{\mathcal {L}_{+}\psi }\, ,\,{\psi }\,\right) \ge \mu \left( \,{\psi }\, ,\,{\psi }\,\right) ,\quad \text { for any } \psi \in P. \end{aligned}$$
(6.31)

Step 2: Nonnegative property. We show

$$\begin{aligned} \inf ~\left\{ { \frac{\left( \,{\mathcal {L}_{+}\psi }\, ,\,{\psi }\,\right) }{\left( \,{ \psi }\, ,\,{\psi }\,\right) } ~:~ \psi \in L^2, ~~ \left( \,{\psi }\, ,\,{\phi _{\omega ,c}}\,\right) = \left( \,{\psi }\, ,\,{\phi _{\omega ,c}^3}\,\right) = \left( \,{\psi }\, ,\,{\partial _x\phi _{\omega ,c}}\,\right) = 0~ }\right\} \ge 0. \end{aligned}$$

In fact, by differentiating equation (6.25) with respect to c and \(\omega ,\) we have

$$\begin{aligned} \mathcal {L}_{+}\partial _{c}\phi _{\omega ,c} = \frac{c}{2}\phi _{\omega ,c}-\frac{1}{2}\phi _{\omega ,c}^{3},\quad \mathcal {L}_{+}\partial _{\omega }\phi _{\omega ,c} =-\phi _{\omega ,c}. \end{aligned}$$
(6.32)

On one hand, (6.30) allows us to decompose \(\partial _{c}\phi _{\omega ,c}\) and \(\partial _{\omega }\phi _{\omega ,c}\) as follows,

$$\begin{aligned} \partial _{c}\phi _{\omega ,c} = a_{1}\chi + b_{1}\partial _{x}\phi _{\omega ,c}+p_{1},\quad \partial _{\omega }\phi _{\omega ,c} = a_{2}\chi +b_{2}\partial _{x}\phi _{\omega ,c}+p_{2}. \end{aligned}$$
(6.33)

where \(a_{1},\) \(a_{2},\) \(b_{1}\) and \(b_{2}\) are constants; \(\chi \) is defined by (6.28); \(p_{1}\) and \(p_{2}\) belong to the subspace P defined by (6.31). On the other hand, for any \(\psi \in L^{2}(\mathbb {R})\) with

$$\begin{aligned} \left( \,{\psi }\, ,\,{\phi _{\omega ,c}}\,\right) = \left( \,{\psi }\, ,\,{\phi _{\omega ,c}^3}\,\right) = \left( \,{\psi }\, ,\,{\partial _x\phi _{\omega ,c}}\,\right) = 0, \end{aligned}$$

we decompose \(\psi \) as follows

$$\begin{aligned} \psi =a\chi +p,\quad \text { with } a\in \mathbb {R},\text {~and~} p\in P. \end{aligned}$$
(6.34)

By some straight calculations, we have

$$\begin{aligned} \left( \,{\mathcal {L}_{+} \psi }\, ,\,{\psi }\,\right)&= -\lambda ^{2}_1a^{2}+\left( \,{\mathcal {L}_{+} p}\, ,\,{p}\,\right) . \end{aligned}$$
(6.35)

Then, it follows from \(\left( \,{\psi }\, ,\,{\phi _{\omega ,c}}\,\right) = 0\) and (6.32) that

$$\begin{aligned} \left( \,{\psi }\, ,\,{\mathcal {L}_{+}\partial _{\omega }\phi _{\omega ,c}}\,\right) =0, \end{aligned}$$

which together with (6.33) and (6.34) implies that

$$\begin{aligned} -aa_{2}\lambda ^{2}_1+\left( \,{\mathcal {L}_{+} p}\, ,\,{p_{2}}\,\right) =0. \end{aligned}$$
(6.36)

By a similar argument as above, we have

$$\begin{aligned} -aa_{1}\lambda ^{2}_1+\left( \,{\mathcal {L}_{+} p}\, ,\,{p_{1}}\,\right) =0. \end{aligned}$$
(6.37)

Next, since

$$\begin{aligned} \det d''\left( {\omega }\, ,\,{c}\right) <0, \end{aligned}$$

there exists \(\left( {\xi _{1}~,~\xi _{2}}\right) \in \mathbb {R}^{2}\) such that

$$\begin{aligned} \begin{pmatrix} \xi _{1} &{} \xi _{2} \\ \end{pmatrix} d''\left( {\omega }\, ,\,{c}\right) \begin{pmatrix} \xi _{1} \\ \xi _{2} \\ \end{pmatrix}>0. \end{aligned}$$
(6.38)

Now, let \(\left( {\xi _{1}~,~\xi _{2}}\right) \in \mathbb {R}^{2}\) satisfy (6.38), and

$$\begin{aligned} p_{0}\triangleq ~&\xi _{1}p_{1}+\xi _{2}p_{2}, \end{aligned}$$

then by a straight calculation, we have

$$\begin{aligned} \left( \,{\mathcal {L}_{+}p_{0}}\, ,\,{p_{0}}\,\right) =&\; \xi _{1}^{2}\left( \,{\mathcal {L}_{+}p_{1}}\, ,\,{p_{1}}\,\right) + 2\xi _{1}\xi _{2}\left( \,{\mathcal {L}_{+}p_{1}}\, ,\,{p_{2}}\,\right) + \xi _{2}^{2}\left( \,{\mathcal {L}_{+}p_{2}}\, ,\,{p_{2}}\,\right) \nonumber \\ =&\; \xi _{1}^{2}\left( \,{\mathcal {L}_{+}\partial _{c}\phi _{\omega ,c}}\, ,\,{\partial _{c}\phi _{\omega ,c}}\,\right) + 2\xi _{1}\xi _{2} \left( \,{\mathcal {L}_{+}\partial _{c}\phi _{\omega ,c}}\, ,\,{\partial _{\omega }\phi _{\omega ,c}}\,\right) \nonumber \\&\; + \xi _{2}^{2} \left( \,{\mathcal {L}_{+}\partial _{\omega }\phi _{\omega ,c}}\, ,\,{\partial _{\omega }\phi _{\omega ,c}}\,\right) + \xi _{1}^{2}a_{1}^{2}\lambda ^{2}_1 + 2\xi _{1}\xi _{2}a_{1}a_{2}\lambda ^{2}_1 + \xi _{2}^{2}a_{2}^{2}\lambda ^{2}_1 \nonumber \\ =&\; - \begin{pmatrix} \xi _{1} &{} \xi _{2} \\ \end{pmatrix} d''\left( {\omega }\, ,\,{c}\right) \begin{pmatrix} \xi _{1} \\ \xi _{2} \\ \end{pmatrix} + \left( {a_1\xi _{1}+a_2\xi _{2}}\right) ^{2}\lambda ^{2}_1 \nonumber \\ <&\; \left( {a_{1}\xi _{1}+a_{2}\xi _{2}}\right) ^{2}\lambda ^{2}_1. \end{aligned}$$
(6.39)

Next, by (6.37), (6.36), (6.39) and the Cauchy-Schwarz inequality, it is easy to see that,

$$\begin{aligned} \left( \,{ \mathcal {L}_{+}p }\, ,\,{p}\,\right) \ge \frac{ {\left( \,{ \mathcal {L}_{+}p }\, ,\,{p_{0}}\,\right) }^{2} }{ \left( \,{ \mathcal {L}_{+}p_{0} }\, ,\,{p_{0}}\,\right) }&\ge \frac{a^{2}\lambda ^{2}_1\left( { a_{1}\xi _{1}+a_{2}\xi _{2} }\right) ^{2} }{ \left( { a_{1}\xi _{1}+a_{2}\xi _{2} }\right) ^{2} } =a^{2}\lambda ^{2}_1, \end{aligned}$$

which, together (6.35), implies that,

$$\begin{aligned} \left( \,{ \mathcal {L}_{+}\psi }\, ,\,{ \psi }\,\right) \ge \;0. \end{aligned}$$

Step 3: Positive property. Last we show

$$\begin{aligned} \inf ~\left\{ { \frac{\left( \,{\mathcal {L}_{+}\psi }\, ,\,{\psi }\,\right) }{\left( \,{ \psi }\, ,\,{\psi }\,\right) } ~:~ \psi \in L^2(\mathbb {R}), ~ \left( \,{\psi }\, ,\,{\phi _{\omega ,c}}\,\right) = \left( \,{\psi }\, ,\,{\phi _{\omega ,c}^3}\,\right) = \left( \,{\psi }\, ,\,{\partial _x\phi _{\omega ,c}}\,\right) = 0~ }\right\} > 0. \end{aligned}$$

We argue by contradiction. Suppose that there exists a sequence \(\psi _{n}\in L^2(\mathbb {R})\) such that

$$\begin{aligned} \left( \,{ \mathcal {L}_{+}\psi _{n}}\, ,\,{ \psi _{n} }\,\right) \rightarrow 0, \end{aligned}$$

with

$$\begin{aligned} \left( \,{\psi _{n}}\, ,\,{\phi _{\omega ,c}}\,\right) = \left( \,{\psi _{n}}\, ,\,{\phi _{\omega ,c}^3}\,\right) = \left( \,{\psi _{n}}\, ,\,{\partial _x\phi _{\omega ,c}}\,\right) = 0 \text {~~and~~} \left( \,{\psi _{n}}\, ,\,{\psi _{n}}\,\right) =1. \end{aligned}$$

By a decomposition similar as (6.34), we have for any n

$$\begin{aligned} \psi _{n}=a_{n}\chi +p_{n}, \quad \text { with ~} a_{n}\in \mathbb {R}, \text {~and~} p_{n}\in P, \end{aligned}$$

moreover, \(\left( \,{ \mathcal {L}_{+}p_{n} }\, ,\,{ p_{0} }\,\right) =\left( a_1\xi _1+a_2\xi _2\right) a_{n}\lambda ^{2}_1.\) Therefore, by the similar arguments as in Step 2, we have

$$\begin{aligned} 0\leftarrow \left( \,{ \mathcal {L}_{+}\psi _{n}}\, ,\,{ \psi _{n} }\,\right)&\ge -a^2_{n}\lambda ^{2}_1 + \frac{ a_{n}^{2}\left( { \xi _{1}a_{1}+\xi _{2}a_{2} }\right) ^{2}\lambda ^{4}_1 }{ \left( \,{ \mathcal {L}_{+}p_{0} }\, ,\,{ p_{0} }\,\right) } \\&=a_{n}^{2}\lambda ^{2}_1 \left( { \frac{ \lambda ^{2}_1\left( { \xi _{1}a_{1}+\xi _{2}a_{2} }\right) ^{2} }{ \left( \,{ \mathcal {L}_{+}p_{0} }\, ,\,{ p_{0} }\,\right) } -1 }\right) . \end{aligned}$$

Thus, it follows from (6.39) that,

$$\begin{aligned} a_{n}\rightarrow 0,\qquad \text {as } n\rightarrow \infty , \end{aligned}$$

which implies that

$$\begin{aligned} \left( \,{ \mathcal {L}_{+}p_{n} }\, ,\,{ p_{n} }\,\right) \rightarrow 0. \end{aligned}$$

Thus \(p_{n}\rightarrow 0\) in \(L^2(\mathbb {R})\), which is in contradiction with \(\left( \,{\psi _{n}}\, ,\,{\psi _{n}}\,\right) =1.\) This ends the proof.

Appendix 2: The linearization of the action functional

In this part, we show Lemma 6.1. First of all, we show the following claim,

Claim 1

Let \(\mathcal {R}_{k}\) be one of the expression \(R_{k},\) \(\partial _{x}R_{k}\) and \(\partial _{x}^{2}R_{k}\), and \(\mathfrak {g}\) and \(\mathfrak {h}\) be defined by (5.2), then

$$\begin{aligned}&\displaystyle \int \left| { \mathcal {R}_{1}\left( {t\,,\,x}\right) ~\mathcal {R}_{2}\left( {t\,,\,x}\right) }\right| \;\mathrm {d}x\le C~ e^{ -8\theta _{2}\left( { \frac{L}{2} + 8\theta _{2}\;t }\right) }.\end{aligned}$$
(6.40)
$$\begin{aligned}&\displaystyle \int \left| { \mathcal {R}_{1}\left( {t\,,\,x}\right) ~\mathfrak {h}\left( {t\,,\,x}\right) }\right| \;\mathrm {d}x+ \int \left| { \mathcal {R}_{2}\left( {t\,,\,x}\right) ~\mathfrak {g}\left( {t\,,\,x}\right) }\right| \;\mathrm {d}x\le C~ e^{ -8\theta _{2} \left( { \frac{L}{2} + 8\theta _{2}t }\right) }, \end{aligned}$$
(6.41)

Proof

Firstly, by Lemma 4.3, we have

$$\begin{aligned} \dot{x}_{2}\left( {t}\right) -\dot{x}_{1}\left( {t}\right)&= \left( {\; c_{2}^{0}-c_{1}^{0}\;}\right) + \left( {\; \dot{x}_{2}\left( {t}\right) - c_{2}\left( {t}\right) \;}\right) - \left( {\; \dot{x}_{1}\left( {t}\right) - c_{1}\left( {t}\right) \;}\right) \\&\quad + \left( {\; c_{2}\left( {t}\right) - c_{2}\left( {0}\right) \;}\right) - \left( {\; c_{1}\left( {t}\right) - c_{1}\left( {0}\right) \; }\right) + \left( {\; c_{2}\left( {0}\right) - c_{2}^{0}\; }\right) - \left( {\; c_{1}\left( {0}\right) - c_{1}^{0} \; }\right) \\&\ge \frac{ c_{2}^{0}-c_{1}^{0} }{ 4 }, \end{aligned}$$

therefore, integrating in \(t>0\) gives us that for \(t>0\)

$$\begin{aligned} x_{2}\left( {t}\right) -x_{1}\left( {t}\right) \ge \frac{L}{2} + \frac{ c_{2}^{0}-c_{1}^{0} }{ 4 }\; t \ge \frac{L}{2} + 8\theta _{2}\;t. \end{aligned}$$

Thus,

$$\begin{aligned} \int \left| { \mathcal {R}_{1}\left( {t\,,\,x}\right) ~\mathcal {R}_{2}\left( {t\,,\,x}\right) }\right| \;\mathrm {d}x&\le C \int e^{ -\frac{ \sqrt{ 4\omega _{1}\left( {t}\right) -c_{1}^{2}\left( {t}\right) } }{2}\left| { x-x_{1}\left( {t}\right) }\right| } ~ e^{ -\frac{ \sqrt{4\omega _{2}\left( {t}\right) -c_{2}^{2}\left( {t}\right) } }{2}\left| { x-x_{2}\left( {t}\right) }\right| } \;\mathrm {d}x\\&\le C \int e^{ -\frac{ \sqrt{ 4\omega _{1}^{0}-\left( {c_{1}^{0}}\right) ^{2} } }{4}\left| { x-x_{1}\left( {t}\right) }\right| } ~ e^{ -\frac{ \sqrt{ 4\omega _{2}^{0}-\left( {c_{2}^{0}}\right) ^{2} } }{4}\left| { x-x_{2}\left( {t}\right) }\right| } \;\mathrm {d}x\\&\le C e^{ -\frac{ \sqrt{ 4\omega _{1}^{0}-\left( {c_{1}^{0}}\right) ^{2} } }{8}\left| { x_{2}\left( {t}\right) -x_{1}\left( {t}\right) }\right| }\\&\le C e^{ -8\theta _{2}\left( { \frac{L}{2} + 8\theta _{2}\;t }\right) }. \end{aligned}$$

Secondly, as for (6.41), we only estimate the former term since the later term can be proved in the same way. By Lemma 4.3, we have for sufficiently small \(\alpha _0\) and sufficiently large \(L_0\)

$$\begin{aligned} \frac{d}{dt}\left( \overline{x}^{0} + \sigma t - \sqrt{t+a} - x_{1}\left( {t}\right) \right) =&\; \sigma - \frac{1}{ 2\sqrt{t+a}}-\dot{x}_{1}\left( {t}\right) \nonumber \\ \ge&\left( { \sigma -c_{1}^{0} }\right) - \frac{4}{L} - \left( {\; \dot{x}_{1}\left( {t}\right) - c_{1}\left( {t}\right) \;}\right) + \left( {\; c_{1}^{0} - c_{1}\left( {t}\right) \; }\right) \nonumber \\ \ge&\frac{\sigma -c_{1}^{0}}{4}, \end{aligned}$$
(6.42)

By integrating with respect to t,  we obtain

$$\begin{aligned} \overline{x}^{0} + \sigma t - \sqrt{t+a} - x_{1}\left( {t}\right) \ge&\; \overline{x}^{0} - \frac{L}{8} - x_{1}\left( {0}\right) + \frac{\sigma -c_{1}^{0}}{4}\; t \nonumber \\ \ge&\frac{L}{4} + 4\theta _{2}t. \end{aligned}$$
(6.43)

This implies that

$$\begin{aligned} \int \left| { \mathcal {R}_{1}\left( {t\,,\,x}\right) ~\mathfrak {h}\left( {t\,,\,x}\right) }\right| \;\mathrm {d}x\le&\; C \int _{x> \overline{x}^{0} + \sigma t - \sqrt{t+a}} e^{ -\frac{ \sqrt{ 4\omega _{1}\left( {t}\right) -c_{1}^{2}\left( {t}\right) } }{2}\left| { x-x_{1}\left( {t}\right) }\right| } \;\mathrm {d}x\\ \le&\; C \int _{x > \overline{x}^{0} + \sigma t - \sqrt{t+a}} e^{ -\frac{ \sqrt{ 4\omega _{1}^{0}-\left( {c_{1}^{0}}\right) ^{2} } }{4}\left| { x-x_{1}\left( {t}\right) }\right| } \;\mathrm {d}x\\ \le&\; C e^{ -16\theta _{2} \left( { \frac{L}{4} + 4\theta _{2}t }\right) }. \end{aligned}$$

This ends the proof. \(\square \)

Proof of Lemma 6.1

We now expand \(\mathfrak {E}\left( {u\left( {t}\right) }\right) \) one by one.

The term: \(\displaystyle \int \left| { \partial _{x} u\left( {t}\right) }\right| ^{2}\;\mathrm {d}x.\) By (6.40) and integration by parts, we have

$$\begin{aligned} \int \left| { \partial _{x} u\left( {t}\right) }\right| ^{2}\;\mathrm {d}x=&\sum _{k=1}^{2}\int \left| { \partial _{x} R_{k}\left( {t}\right) }\right| ^{2}\;\mathrm {d}x- \sum _{k=1}^{2} 2 \mathfrak {R}\int \partial _{x}^{2}R_{k}\left( {t}\right) \; \overline{\varepsilon }\left( {t}\right) \;\mathrm {d}x+ \int \left| { \partial _{x} \varepsilon \left( {t}\right) }\right| ^{2}\;\mathrm {d}x\\&+ \mathrm {O}\left( ~{ e^{ -8\theta _{2}\left( { \frac{L}{2} + 8\theta _{2}\;t }\right) } }~\right) . \end{aligned}$$

The term: \(\displaystyle \int \left| {u\left( {t}\right) }\right| ^{6}\;\mathrm {d}x.\) By (6.40) and Gagliardo-Nirenberg inequality, we have

$$\begin{aligned} \int \left| {u\left( {t}\right) }\right| ^{6}\;\mathrm {d}x=&\sum _{k=1}^{2}\int \left| { R_{k}\left( {t}\right) }\right| ^{6} \;\mathrm {d}x+ \sum _{k=1}^{2} \int 6 \left| { R_{k}\left( {t}\right) }\right| ^{4}\mathfrak {R}\left( { R_{k} \;\overline{ \varepsilon }}\right) \left( {t}\right) \;\mathrm {d}x\\&+ \sum _{k=1}^{2} \int 3 \left| { R_{k}\left( {t}\right) }\right| ^{4} \left| { \varepsilon \left( {t}\right) }\right| ^{2} + 12 \left| { R_{k}\left( {t}\right) }\right| ^{2} \left[ \mathfrak {R}\left( { R_{k} \;\overline{ \varepsilon }}\right) \left( {t}\right) \right] ^{2} \;\mathrm {d}x\\&+ \left\| \varepsilon \left( {t}\right) \right\| _{H^1(\mathbb {R})}^{2}\beta \left( { \left\| \varepsilon \left( {t}\right) \right\| _{H^1(\mathbb {R})} }\right) + \mathrm {O}\left( ~{ e^{ -8\theta _{2}\left( { \frac{L}{2} + 8\theta _{2}\;t }\right) } }~\right) . \end{aligned}$$

The term: \(\displaystyle \frac{\omega _{1}\left( {0}\right) }{2}\int \left| {u\left( {t}\right) }\right| ^{2}\mathfrak {g}\left( {t}\right) \;\mathrm {d}x\) and \(\displaystyle \frac{\omega _{2}\left( {0}\right) }{2}\int \left| {u\left( {t}\right) }\right| ^{2}\mathfrak {h}\left( {t}\right) \;\mathrm {d}x.\) By (6.41) and the Cauchy-Schwarz inequality, we have

$$\begin{aligned}&\frac{\omega _{1}\left( {0}\right) }{2}\int \left| {u\left( {t}\right) }\right| ^{2}\mathfrak {g}\left( {t}\right) \;\mathrm {d}x\\&\quad = \frac{\omega _{1}\left( {0}\right) }{2} \int \left| {\sum _{k=1}^{2} R_{k}\left( {t}\right) + \varepsilon \left( {t}\right) }\right| ^{2}\mathfrak {g}\left( {t}\right) \;\mathrm {d}x\\&\quad = \frac{\omega _{1}\left( {0}\right) }{2} \int \left| { R_{1}\left( {t}\right) }\right| ^{2} - \left| { R_{1}\left( {t}\right) }\right| ^{2} \mathfrak {h}\left( {t}\right) + \left| { R_{2}\left( {t}\right) }\right| ^{2} \mathfrak {g}\left( {t}\right) + 2 \mathfrak {R}\left( { R_{1}\;\overline{ R_{2} } }\right) \left( {t}\right) \mathfrak {g}\left( {t}\right) \;\mathrm {d}x\\&\qquad + \frac{\omega _{1}\left( {0}\right) }{2} \int \mathfrak {R}\left( { R_{1}\;\overline{ \varepsilon } }\right) - \mathfrak {R}\left( { R_{1}\;\overline{ \varepsilon } }\right) \left( {t}\right) \mathfrak {h}\left( {t}\right) + \mathfrak {R}\left( { R_{2}\;\overline{ \varepsilon } }\right) \left( {t}\right) \mathfrak {g}\left( {t}\right) \;\mathrm {d}x\\&\qquad + \frac{\omega _{1}\left( {0}\right) }{2} \int \left| { \varepsilon \left( {t}\right) }\right| ^{2}\mathfrak {g}\left( {t}\right) \;\mathrm {d}x\\&\quad = \frac{\omega _{1}\left( {0}\right) }{2} \int \left| { R_{1}\left( {t}\right) }\right| ^{2} \;\mathrm {d}x+ \frac{\omega _{1}\left( {0}\right) }{2} \int \mathfrak {R}\left( { R_{1}\;\overline{ \varepsilon } }\right) \;\mathrm {d}x+ \frac{\omega _{1}\left( {0}\right) }{2} \int \left| { \varepsilon \left( {t}\right) }\right| ^{2}\mathfrak {g}\left( {t}\right) \;\mathrm {d}x\\&\qquad + \mathrm {O}\left( ~{ \int \left| { R_{1}\left( {t}\right) }\right| ^{2} \mathfrak {h}\left( {t}\right) + \left| { R_{2}\left( {t}\right) }\right| ^{2} \mathfrak {g}\left( {t}\right) + \left| { R_{1}\left( {t}\right) }\right| \;\left| { R_{2}\left( {t}\right) }\right| \mathfrak {g}\left( {t}\right) \;\mathrm {d}x}~\right) \\&\qquad + \mathrm {O}\left( ~{ \int \left| { R_{1}\left( {t}\right) }\right| \;\left| { \varepsilon \left( {t}\right) }\right| \mathfrak {h}\left( {t}\right) + \left| { R_{2}\left( {t}\right) }\right| \;\left| { \varepsilon \left( {t}\right) }\right| \mathfrak {g}\left( {t}\right) \;\mathrm {d}x}~\right) \\&\quad = \frac{\omega _{1}\left( {0}\right) }{2} \int \left| { R_{1}\left( {t}\right) }\right| ^{2} \;\mathrm {d}x+ \frac{\omega _{1}\left( {0}\right) }{2} \int \mathfrak {R}\left( { R_{1}\;\overline{ \varepsilon } }\right) \;\mathrm {d}x+ \frac{\omega _{1}\left( {t}\right) }{2} \int \left| { \varepsilon \left( {t}\right) }\right| ^{2}\mathfrak {g}\left( {t}\right) \;\mathrm {d}x\\&\qquad + \frac{ \omega _{1}\left( {0}\right) - \omega _{1}\left( {t}\right) }{ 2 } \int \left| { \varepsilon \left( {t}\right) }\right| ^{2}\mathfrak {g}\left( {t}\right) \;\mathrm {d}x\\&\qquad + \mathrm {O}\left( ~{ \int \left| { R_{1}\left( {t}\right) }\right| ^{2} \mathfrak {h}\left( {t}\right) + \left| { R_{2}\left( {t}\right) }\right| ^{2} \mathfrak {g}\left( {t}\right) + \left| { R_{1}\left( {t}\right) }\right| \;\left| { R_{2}\left( {t}\right) }\right| \mathfrak {g}\left( {t}\right) \;\mathrm {d}x}~\right) \\&\qquad + \mathrm {O}\left( ~{ \int \left| { R_{1}\left( {t}\right) }\right| \;\left| { \varepsilon \left( {t}\right) }\right| \mathfrak {h}\left( {t}\right) + \left| { R_{2}\left( {t}\right) }\right| \;\left| { \varepsilon \left( {t}\right) }\right| \mathfrak {g}\left( {t}\right) \;\mathrm {d}x}~\right) \\&\quad = \frac{\omega _{1}\left( {0}\right) }{2} \int \left| { R_{1}\left( {t}\right) }\right| ^{2} \;\mathrm {d}x+ \frac{\omega _{1}\left( {0}\right) }{2} \int \mathfrak {R}\left( { R_{1}\;\overline{ \varepsilon } }\right) \;\mathrm {d}x+ \frac{\omega _{1}\left( {t}\right) }{2} \int \left| { \varepsilon \left( {t}\right) }\right| ^{2}\mathfrak {g}\left( {t}\right) \;\mathrm {d}x\\&\qquad + \left\| \varepsilon \left( {t}\right) \right\| _{H^1(\mathbb {R})}^{2} \beta \left( { \left\| \varepsilon \left( {t}\right) \right\| _{H^1(\mathbb {R})} }\right) + \mathrm {O}\left( ~{ \left| { \omega _{1}\left( {t}\right) - \omega _{1}\left( {0}\right) }\right| ^{2} }~\right) + \mathrm {O}\left( ~{ e^{ -8\theta _{2} \left( { \frac{L}{2} + 8\theta _{2}t }\right) } }~\right) , \end{aligned}$$

and

$$\begin{aligned}&\frac{\omega _{2}\left( {0}\right) }{2}\int \left| {u\left( {t}\right) }\right| ^{2}\mathfrak {h}\left( {t}\right) \;\mathrm {d}x\\&\quad = \frac{\omega _{2}\left( {0}\right) }{2} \int \left| { R_{2}\left( {t}\right) }\right| ^{2} \;\mathrm {d}x+ \frac{\omega _{2}\left( {0}\right) }{2} \int \mathfrak {R}\left( { R_{2}\;\overline{ \varepsilon } }\right) \;\mathrm {d}x+ \frac{\omega _{2}\left( {t}\right) }{2} \int \left| { \varepsilon \left( {t}\right) }\right| ^{2}\mathfrak {g}\left( {t}\right) \;\mathrm {d}x\\&\qquad + \left\| \varepsilon \left( {t}\right) \right\| _{H^1(\mathbb {R})}^{2} \beta \left( { \left\| \varepsilon \left( {t}\right) \right\| _{H^1(\mathbb {R})} }\right) + \mathrm {O}\left( ~{ \left| { \omega _{2}\left( {t}\right) - \omega _{2}\left( {0}\right) }\right| ^{2} }~\right) + \mathrm {O}\left( ~{ e^{ -8\theta _{2} \left( { \frac{L}{2} + 8\theta _{2}t }\right) } }~\right) . \end{aligned}$$

The term \(\displaystyle - \frac{c_{1}\left( {0}\right) }{2}\; \mathfrak {I}\int \left( { \overline{u}\partial _{x}u }\right) \left( {t}\right) \mathfrak {g}\left( {t}\right) \;\mathrm {d}x\) and \(\displaystyle - \frac{c_{2}\left( {0}\right) }{2}\; \mathfrak {I}\int \left( { \overline{u}\partial _{x}u }\right) \left( {t}\right) \mathfrak {h}\left( {t}\right) \;\mathrm {d}x.\) Similarly, we have

$$\begin{aligned}&- \frac{c_{1}\left( {0}\right) }{2}\; \mathfrak {I}\int \left( { \overline{u}\partial _{x}u }\right) \left( {t}\right) \mathfrak {g}\left( {t}\right) \;\mathrm {d}x\\&\quad = - \frac{c_{1}\left( {0}\right) }{2}\; \mathfrak {I}\int \overline{R}_{1}\; \partial _{x} R_{1}\left( {t}\right) \;\mathrm {d}x- c_{1}\left( {0}\right) \; \mathfrak {I}\int \partial _{x} R_{1}\left( {t}\right) \;\overline{\varepsilon } \;\mathrm {d}x\\&\qquad - \frac{c_{1}\left( {t}\right) }{2}\; \mathfrak {I}\int \overline{\varepsilon }\; \partial _{x} \varepsilon \left( {t}\right) \mathfrak {g}\left( {t}\right) \;\mathrm {d}x\\&\qquad + \left\| \varepsilon \left( {t}\right) \right\| _{H^1(\mathbb {R})}^{2} \beta \left( { \left\| \varepsilon \left( {t}\right) \right\| _{H^1(\mathbb {R})} }\right) + \mathrm {O}\left( ~{ \left| { c_{1}\left( {t}\right) - c_{1}\left( {0}\right) }\right| ^{2} }~\right) + \mathrm {O}\left( ~{ e^{ -8\theta _{2} \left( { \frac{L}{2} + 8\theta _{2}t }\right) } }~\right) , \end{aligned}$$

and

$$\begin{aligned}&- \frac{c_{2}\left( {0}\right) }{2}\; \mathfrak {I}\int \left( { \overline{u}\partial _{x}u }\right) \left( {t}\right) \left( {t}\right) \mathfrak {h}\left( {t}\right) \;\mathrm {d}x\\&\quad = - \frac{c_{2}\left( {0}\right) }{2}\; \mathfrak {I}\int \overline{R}_{2}\; \partial _{x} R_{2}\left( {t}\right) \;\mathrm {d}x- c_{2}\left( {0}\right) \; \mathfrak {I}\int \partial _{x} R_{2}\left( {t}\right) \;\overline{\varepsilon } \;\mathrm {d}x\\&\qquad - \frac{c_{2}\left( {t}\right) }{2}\; \mathfrak {I}\int \overline{\varepsilon }\; \partial _{x} \varepsilon \left( {t}\right) \mathfrak {h}\left( {t}\right) \;\mathrm {d}x\\&\qquad + \left\| \varepsilon \left( {t}\right) \right\| _{H^1(\mathbb {R})}^{2} \beta \left( { \left\| \varepsilon \left( {t}\right) \right\| _{H^1(\mathbb {R})} }\right) + \mathrm {O}\left( ~{ \left| { c_{2}\left( {t}\right) - c_{2}\left( {0}\right) }\right| ^{2} }~\right) + \mathrm {O}\left( ~{ e^{ -8\theta _{2} \left( { \frac{L}{2} + 8\theta _{2}t }\right) } }~\right) . \end{aligned}$$

The term \(\displaystyle \frac{c_{1}\left( {0}\right) }{8}\int \left| {u\left( {t}\right) }\right| ^{4}\mathfrak {g}\left( {t}\right) \;\mathrm {d}x\) and \(\displaystyle \frac{c_{2}\left( {0}\right) }{8}\int \left| {u\left( {t}\right) }\right| ^{4}\mathfrak {h}\left( {t}\right) \;\mathrm {d}x.\)

$$\begin{aligned}&\frac{c_{1}\left( {0}\right) }{8}\int \left| {u\left( {t}\right) }\right| ^{4}\mathfrak {g}\left( {t}\right) \;\mathrm {d}x\\&\quad = \frac{c_{1}\left( {0}\right) }{8} \int \left| {R_{1}\left( {t}\right) }\right| ^{4} \;\mathrm {d}x+ \frac{c_{1}\left( {0}\right) }{4} \int \left| {R_{1}\left( {t}\right) }\right| ^{2}\mathfrak {R}\left( {R_{1}\;\overline{\varepsilon }}\right) \left( {t}\right) \;\mathrm {d}x\\&\qquad + \frac{c_{1}\left( {t}\right) }{8} \int 2 \left| {R_{1}\left( {t}\right) }\right| ^{2}\left| {\varepsilon \left( {t}\right) }\right| ^{2} + \left[ \mathfrak {R}\left( {R_{1}\;\overline{\varepsilon }}\right) \left( {t}\right) \right] ^{2} \;\mathrm {d}x\\&\qquad + \left\| \varepsilon \left( {t}\right) \right\| _{H^1(\mathbb {R})}^{2} \beta \left( { \left\| \varepsilon \left( {t}\right) \right\| _{H^1(\mathbb {R})} }\right) + \mathrm {O}\left( ~{ \left| { c_{1}\left( {t}\right) - c_{1}\left( {0}\right) }\right| ^{2} }~\right) + \mathrm {O}\left( ~{ e^{ -8\theta _{2} \left( { \frac{L}{2} + 8\theta _{2}t }\right) } }~\right) , \end{aligned}$$

and

$$\begin{aligned}&\frac{c_{2}\left( {0}\right) }{8}\int \left| {u\left( {t}\right) }\right| ^{4}\mathfrak {h}\left( {t}\right) \;\mathrm {d}x\\&\quad = \frac{c_{2}\left( {0}\right) }{8} \int \left| {R_{2}\left( {t}\right) }\right| ^{4} \;\mathrm {d}x+ \frac{c_{2}\left( {0}\right) }{4} \int \left| {R_{2}\left( {t}\right) }\right| ^{2}\mathfrak {R}\left( {R_{2}\;\overline{\varepsilon }}\right) \left( {t}\right) \;\mathrm {d}x\\&\qquad + \frac{c_{2}\left( {t}\right) }{8} \int 2 \left| {R_{2}\left( {t}\right) }\right| ^{2}\left| {\varepsilon \left( {t}\right) }\right| ^{2} + \left[ \mathfrak {R}\left( {R_{2}\;\overline{\varepsilon }}\right) \left( {t}\right) \right] ^{2} \;\mathrm {d}x\\&\qquad + \left\| \varepsilon \left( {t}\right) \right\| _{H^1(\mathbb {R})}^{2} \beta \left( { \left\| \varepsilon \left( {t}\right) \right\| _{H^1(\mathbb {R})} }\right) + \mathrm {O}\left( ~{ \left| { c_{2}\left( {t}\right) - c_{2}\left( {0}\right) }\right| ^{2} }~\right) + \mathrm {O}\left( ~{ e^{ -8\theta _{2} \left( { \frac{L}{2} + 8\theta _{2}t }\right) } }~\right) . \end{aligned}$$

Summing up the above terms, we can conclude the proof by (3.9) for \(k=1, 2\) and the orthogonal conditions (4.11). \(\square \)

Appendix 3: The coercivity of the localized quadratic term

Let L be large enough, \(x_{1}\) and \(x_{2}\in \mathbb {R}\) with \(x_{2}-x_{1}>\frac{L}{2}.\) Now, define

$$\begin{aligned} g\left( {x}\right) = \left\{ \begin{array}{ll} 1, &{} x\le x_{1}+\frac{L}{8}, \\ 0<\cdot<1, &{} x_{1}+\frac{L}{8}< x < x_{2}-\frac{L}{8}, \\ 0, &{} x\ge x_{2}-\frac{L}{8}, \end{array} \right. \quad \text {and}\; h\left( {x}\right) = 1 - g\left( {x}\right) . \end{aligned}$$
(6.44)

In order to prove Lemma 6.2, it suffices to show the following result.

Lemma 6.4

Let \(L>1\) be large enough, gh be given by (6.44). Then there exists \(C_1>0\) such that

$$\begin{aligned} \mathcal {H}_{2}\left( {~\varepsilon ~,~\varepsilon ~}\right) \ge C_1 \left\| \varepsilon \right\| _{H^1(\mathbb {R})}, \end{aligned}$$

where

$$\begin{aligned} \mathcal {H}_{2}\left( {~\varepsilon ~,~\varepsilon ~}\right) =\,&\frac{1}{2}\int \left| {\varepsilon _{x}}\right| ^{2} - \frac{1}{32} \left( 3 \int \left| {R_{1}}\right| ^{4}\left| {\varepsilon }\right| ^{2} + 12 \int \left| {R_{1}}\right| ^{2}\left[ \mathfrak {R}\left( { \overline{R}_{1}\varepsilon }\right) \right] ^{2} \right) \\&- \frac{1}{32} \left( 3 \int \left| {R_{2}}\right| ^{4}\left| {\varepsilon }\right| ^{2} + 12 \int \left| {R_{2}}\right| ^{2}\left[ \mathfrak {R}\left( { \overline{R}_{2}\varepsilon }\right) \right] ^{2} \right) \\&+ \frac{ \omega _{1} }{ 2 }\int \left| { \varepsilon }\right| ^{2}g - \frac{c_{1}}{2}\mathfrak {I}\int \overline{\varepsilon }\varepsilon _{x}g + \frac{c_{1}}{8} \left( { 2 \int \left| {R_{1}}\right| ^{2}\left| {\varepsilon }\right| ^{2} + 4 \int \left[ \mathfrak {R}\left( { \overline{R}_{1}\varepsilon }\right) \right] ^{2} }\right) \\&+ \frac{ \omega _{2} }{ 2 }\int \left| { \varepsilon }\right| ^{2}h - \frac{c_{2}}{2}\mathfrak {I}\int \overline{\varepsilon }\varepsilon _{x}h + \frac{c_{2}}{8} \left( { 2 \int \left| {R_{2}}\right| ^{2}\left| {\varepsilon }\right| ^{2} + 4 \int \left[ \mathfrak {R}\left( { \overline{R}_{2}\varepsilon }\right) \right] ^{2} }\right) , \end{aligned}$$

with \(R_{k}\left( {x}\right) =\varphi _{\omega _{k},c_{k}}\left( {x - x_{k}}\right) e^{i\gamma _{k}}\) \(\left( { k=1,\,2}\right) .\)

First, we give a localized version of the ‘single solitary’ coercive result. For the convenience of notation, we denote

$$\begin{aligned} R\left( {x}\right) = \varphi _{\omega ,c}\left( {x-y_0}\right) e^{i\gamma }, \end{aligned}$$

with \(4\omega >c^{2},\) \(y_{0},\,\theta \in \mathbb {R}.\) Let \(\Phi \,:\,\mathbb {R}\mapsto \mathbb {R}\) be an even \(C^{2}\) function with

$$\begin{aligned} \Phi \left( {x}\right) = \left\{ \begin{array}{ll} 1, &{} \left| {x}\right| \le 1, \\ e^{-|x|}\le \cdot \le 3 e^{-|x|}, &{} 1<\left| {x}\right| <2, \\ e^{-|x|}, &{} \left| {x}\right| \ge 2, \end{array} \right. \end{aligned}$$

and \(\Phi '\left( {x}\right) \le 0\) for \(x>0.\)

Lemma 6.5

Let \(B>1\) be large enough. If \(\varepsilon \in H^{1}\left( {\mathbb {R}}\right) \) satisfies the following orthogonality condition,

$$\begin{aligned}&\mathfrak {R}\int R(x)\; \overline{\varepsilon (x)} \;\mathrm {d}x=0, \quad \mathfrak {R}\int \left( {i\partial _x R + \frac{1}{2} \left| {R}\right| ^2R}\right) (x)\; \overline{\varepsilon (x)} \;\mathrm {d}x=0,\\&\mathfrak {R}\int \partial _x R(x)\; \overline{\varepsilon (x)} \;\mathrm {d}x=0, \quad \mathfrak {R}\int iR(x)\; \overline{ \varepsilon (x)} \;\mathrm {d}x=0. \end{aligned}$$

Then, we have

$$\begin{aligned} \mathcal {H}_{ B, y_{0} }\left( \,{ \varepsilon }\, ,\,{ \varepsilon }\,\right) \ge \frac{C_{0}}{4}\int \left( { \left| {\varepsilon _{x}}\right| ^{2} + \left| {\varepsilon }\right| ^{2} }\right) \Phi _{B,y_{0}}\, \mathrm {d}x, \end{aligned}$$

where

$$\begin{aligned} \mathcal {H}_{ B, y_{0} }\left( \,{ \varepsilon }\, ,\,{ \varepsilon }\,\right) =&\frac{1}{2}\int \left| {\varepsilon _{x}}\right| ^{2}\Phi _{B,y_{0}}\,\mathrm {d}x+ \frac{\omega }{2}\int \left| {\varepsilon }\right| ^{2}\Phi _{B,y_{0}}\,\mathrm {d}x- \frac{c}{2}\mathfrak {I}\int \overline{\varepsilon }\varepsilon _{x}\Phi _{B,y_{0}}\,\mathrm {d}x\\&+ \frac{c}{8} \left( { 2 \int \left| { R }\right| ^{2}\left| {\varepsilon }\right| ^{2}\Phi _{B,y_{0}}\,\mathrm {d}x+ 4 \int \left[ \mathfrak {R}\left( {\overline{R}\varepsilon }\right) \right] ^{2}\Phi _{B,y_{0}}\,\mathrm {d}x}\right) \\&- \frac{1}{32} \left( { 3 \int \left| { R }\right| ^{4}\left| {\varepsilon }\right| ^{2}\Phi _{B,y_{0}}\,\mathrm {d}x+ 12 \int \left| { R }\right| ^{2}\left[ \mathfrak {R}\left( {\overline{R}\varepsilon }\right) \right] ^{2}\Phi _{B,y_{0}}\,\mathrm {d}x}\right) . \end{aligned}$$

Proof

By setting \(\zeta \left( {x}\right) =\sqrt{\Phi _{B,y_{0}}\left( {x}\right) }\varepsilon \left( {x}\right) ,\) we have

$$\begin{aligned}&\left| {\varepsilon _{x}}\right| ^{2}\Phi _{B,y_{0}} = \left| {\zeta _{x}}\right| ^{2} - \frac{ \Phi _{B,y_{0}}' }{ \Phi _{B,y_{0}} }\mathfrak {R}\left( { \overline{\zeta }\zeta _{x} }\right) + \frac{1}{4} \left( { \frac{ \Phi _{B,y_{0}}' }{ \Phi _{B,y_{0}} } }\right) ^{2}\left| {\zeta }\right| ^{2}.\\&\mathfrak {I}\left( { \overline{\varepsilon }\varepsilon _{x} }\right) \Phi _{B,y_{0}} = \mathfrak {I}\left( { \overline{\zeta }\zeta _{x} }\right) , \quad \text { and }\quad \left| {\varepsilon }\right| ^{2}\Phi _{B,y_{0}} = \left| {\zeta }\right| ^{2}. \end{aligned}$$

Now, we rewrite the quadratic form \(\mathcal {H}_{ B, y_{0} }\) as a quadratic form with respect to \(\zeta ,\) which means

$$\begin{aligned} \mathcal {H}_{ B, y_{0} }\left( \,{\varepsilon }\, ,\,{\varepsilon }\,\right) =&\mathcal {H}_{\omega ,c}\left( \,{ \zeta }\, ,\,{ \zeta }\,\right) - \frac{1}{2}\mathfrak {R}\int \frac{ \Phi _{B,y_{0}}' }{ \Phi _{B,y_{0}} }\overline{\zeta }\zeta _{x}\,\mathrm {d}x- \frac{1}{4} \int \left( { \frac{ \Phi _{B,y_{0}}' }{ \Phi _{B,y_{0}} } }\right) ^{2}\left| {\zeta }\right| ^{2}\,\mathrm {d}x. \end{aligned}$$

On the one hand, as a consequence of Lemma 3.2, we obtain

$$\begin{aligned} \mathcal {H}_{\omega ,c}\left( \,{ \zeta }\, ,\,{ \zeta }\,\right)\ge & {} \frac{C_{0}}{2}\left\| \zeta \right\| _{H^1(\mathbb {R})}^{2} \\&- \frac{ 2 }{ C_{0} } \left[ \left( { \mathfrak {R}\int R\; \overline{\zeta } \,\mathrm {d}x}\right) ^{2} + \left( { \mathfrak {R}\int \left( {i\partial _x R + \frac{1}{2} \left| {R}\right| ^2R}\right) \; \overline{\zeta } \,\mathrm {d}x}\right) ^{2} \right] \\&- \frac{ 2 }{C_{0} } \left[ \left( { \mathfrak {R}\int \partial _x R\; \overline{\zeta } \,\mathrm {d}x}\right) ^{2} + \left( { \mathfrak {R}\int iR\; \overline{ \zeta } \,\mathrm {d}x}\right) ^{2} \right] . \end{aligned}$$

On the other hand, a straight calculation implies that

$$\begin{aligned} \left| { \mathfrak {R}\int R\; \overline{\zeta } \,\mathrm {d}x}\right|&= \left| { \mathfrak {R}\int R\; \overline{\varepsilon }\left( { 1-\sqrt{\Phi _{B,y_{0}}} }\right) \,\mathrm {d}x}\right| \\&= \left| { \mathfrak {R}\int _{ \left| { x-y_{0} }\right|>B }R\; \overline{\varepsilon }\left( { 1-\sqrt{\Phi _{B,y_{0}}} }\right) \,\mathrm {d}x}\right| \\&\le \Vert \varepsilon \Vert _{2}\left( { \int _{ \left| { x-y_{0} }\right| >B }\left| {R}\right| ^{2} \,\mathrm {d}x}\right) ^{\frac{1}{2}}\\&\le \frac{ C }{ e^{ \sqrt{ 4\omega -c^{2} }\frac{B}{2} } }\Vert \varepsilon \Vert _{2}, \end{aligned}$$

moreover, applying the similar argument to \(\mathfrak {R}\int \left( {i\partial _x R + \frac{1}{2} \left| {R}\right| ^2R}\right) \; \overline{\zeta }, \) \(\mathfrak {R}\int \partial _x R\; \overline{\zeta }\) and \(\mathfrak {R}\int i R\;\overline{ \zeta }\) gives us that

$$\begin{aligned} \mathcal {H}_{\omega ,c}\left( \,{ \zeta }\, ,\,{ \zeta }\,\right) \ge \frac{C_{0}}{2}\left\| \zeta \right\| _{H^1(\mathbb {R})}^{2} - \frac{ C }{ e^{ \sqrt{ 4\omega -c^{2} }B } }\Vert \zeta \Vert _{2}^{2}. \end{aligned}$$

Now it follows from \(\left| { \Phi _{B,y_{0}}' }\right| \le \frac{C }{B}\Phi _{B,y_{0}}\) that, for \(B>1\) large enough,

$$\begin{aligned} \mathcal {H}_{ B,y_{0} }\left( \,{\varepsilon }\, ,\,{\varepsilon }\,\right) \ge \frac{C_{0}}{2}\left\| \zeta \right\| _{H^1(\mathbb {R})}^{2} - \frac{ C }{ e^{ \sqrt{ 4\omega -c^{2} }B } }\Vert \zeta \Vert _{2}^{2} - \frac{C}{B^{2}} \left\| \zeta \right\| _{H^1(\mathbb {R})}^{2} \ge \frac{3C_{0}}{8}\left\| \zeta \right\| _{H^1(\mathbb {R})}^{2}. \end{aligned}$$

Since

$$\begin{aligned} \left| {\zeta _{x}}\right| ^{2} =&\left| {\varepsilon _{x}}\right| ^{2}\Phi _{B,y_{0}} + \frac{ \Phi _{B,y_{0}}' }{ \Phi _{B,y_{0}} }\mathfrak {R}\left( { \overline{\varepsilon }\varepsilon _{x} }\right) \Phi _{B,y_{0}} + \frac{1}{4} \left( { \frac{ \Phi _{B,y_{0}}' }{ \Phi _{B,y_{0}} } }\right) ^{2} \left| {\varepsilon }\right| ^{2}\Phi _{B,y_{0}}\\ \ge&\left( { 1-\frac{C}{B^{2}} }\right) \left| {\varepsilon _{x}}\right| ^{2}\Phi _{B,y_{0}} - \frac{C}{B^{2}}\left| {\varepsilon }\right| ^{2}\Phi _{B,y_{0}} \end{aligned}$$

we obtain, for B large enough,

$$\begin{aligned} \mathcal {H}_{ B, y_{0} }\left( \,{\varepsilon }\, ,\,{\varepsilon }\,\right) \ge \frac{C_{0}}{4}\int \left( { \left| {\varepsilon _{x}}\right| ^{2} + \left| {\varepsilon }\right| ^{2} }\right) \Phi _{B,y_{0}} \,\mathrm {d}x. \end{aligned}$$

This ends the proof. \(\square \)

Proof of Lemma 6.4

Since \(L>1\) is sufficiently large enough, we can take \(B\in \left( {1,~\frac{L}{4}~}\right) \) such that Claim 6.5 holds.

$$\begin{aligned}&\mathcal {H}_{2}\left( {~\varepsilon ~,~\varepsilon ~}\right) \\&\quad = \mathcal {H}_{ B,x_{1} }\left( \,{ \varepsilon }\, ,\,{ \varepsilon }\,\right) + \mathcal {H}_{ B,x_{2} }\left( \,{ \varepsilon }\, ,\,{ \varepsilon }\,\right) \\&\qquad + \frac{1}{2} \int \left[ \left| {\varepsilon _{x}}\right| ^{2} + \omega _{1}\left| {\varepsilon }\right| - c_{1}\mathfrak {I}\left( { \overline{\varepsilon }\varepsilon _{x} }\right) \right] \left( { g - \Phi _{B,x_{1}} }\right) \,\mathrm {d}x\\&\qquad + \frac{1}{2} \int \left[ \left| {\varepsilon _{x}}\right| ^{2} + \omega _{2}\left| {\varepsilon }\right| - c_{2}\mathfrak {I}\left( { \overline{\varepsilon }\varepsilon _{x} }\right) \right] \left( { h - \Phi _{B,x_{2}} }\right) \,\mathrm {d}x\\&\qquad + \frac{c_{1}}{8} \left( { 2 \int \left| {R_{1}}\right| ^{2}\left| {\varepsilon }\right| ^{2} \left( { 1 - \Phi _{B,x_{1}} }\right) \,\mathrm {d}x+ 4 \int \left[ \mathfrak {R}\left( { \overline{R}_{2}\varepsilon }\right) \right] ^{2} \left( { 1 - \Phi _{B,x_{1}} }\right) \,\mathrm {d}x}\right) \\&\qquad + \frac{c_{2}}{8} \left( { 2 \int \left| {R_{2}}\right| ^{2}\left| {\varepsilon }\right| ^{2} \left( { 1 - \Phi _{B,x_{2}} }\right) \,\mathrm {d}x+ 4 \int \left[ \mathfrak {R}\left( { \overline{R}_{1}\varepsilon }\right) \right] ^{2} \left( { 1 - \Phi _{B,x_{2}} }\right) \,\mathrm {d}x}\right) \\&\qquad - \frac{1}{32} \left( 3 \int \left| {R_{1}}\right| ^{4}\left| {\varepsilon }\right| ^{2} \left( { 1 - \Phi _{B,x_{1}} }\right) \,\mathrm {d}x+ 12 \int \left| {R_{1}}\right| ^{2}\left[ \mathfrak {R}\left( { \overline{R}_{1}\varepsilon }\right) \right] ^{2} \left( { 1 - \Phi _{B,x_{1}}}\right) \,\mathrm {d}x\right) \\&\qquad - \frac{1}{32} \left( 3 \int \left| {R_{2}}\right| ^{4}\left| {\varepsilon }\right| ^{2} \left( { 1 - \Phi _{B,x_{2}} }\right) \,\mathrm {d}x+ 12 \int \left| {R_{2}}\right| ^{2}\left[ \mathfrak {R}\left( { \overline{R}_{2}\varepsilon }\right) \right] ^{2} \left( { 1 - \Phi _{B,x_{2}} }\right) \,\mathrm {d}x\right) . \end{aligned}$$

It follows from a direct computation that

$$\begin{aligned} g\left( {x}\right) -\Phi _{B,x_{1}}\left( {x}\right) \left\{ \begin{array}{ll} = 0, &{} \left| { x-x_{1} }\right|<\frac{L}{8}, \\ \ge -e^{-\frac{L}{8B}}, &{} \text { else }, \end{array} \right. \\ h\left( {x}\right) -\Phi _{B,x_{2}}\left( {x}\right) \left\{ \begin{array}{ll} = 0, &{} \left| { x-x_{2} }\right|<\frac{L}{8}, \\ \ge -e^{-\frac{L}{8B}}, &{} \text { else }, \end{array} \right. \\ 1-\Phi _{B,x_{1}}\left( {x}\right) \left\{ \begin{array}{ll} = 0, &{} \left| { x-x_{1} }\right| <\frac{L}{8}, \\ \ge -e^{-\frac{L}{8B}}, &{} \text { else }, \end{array} \right. \end{aligned}$$

and

$$\begin{aligned} 1-\Phi _{B,x_{2}}\left( {x}\right) \left\{ \begin{array}{ll} = 0, &{} \left| { x-x_{2} }\right| <\frac{L}{8}, \\ \ge -e^{-\frac{L}{8B}}, &{} \text { else }. \end{array} \right. \end{aligned}$$

Moreover, since, for \(k=1,2,\) \(c_{k}^{2}<4\omega _{k},\) there exists \(\delta _{k}>0\) such that

$$\begin{aligned} \left| {\varepsilon _{x}}\right| ^{2} + \omega _{k}\left| {\varepsilon }\right| ^{2} - c_{k}\mathfrak {I}\left( { \overline{\varepsilon }\varepsilon _{x} }\right) \ge \delta _{k}\left( { \left| {\varepsilon _{x}}\right| ^{2} + \left| {\varepsilon }\right| ^{2} }\right) . \end{aligned}$$

Thus, taking L large enough, we obtain

$$\begin{aligned} \mathcal {H}_{2}\left( {~\varepsilon ~,~\varepsilon ~}\right)&\ge \frac{C_{0}}{4} \int \left( { \left| {\varepsilon _{x}}\right| ^{2} + \left| {\varepsilon }\right| ^{2} }\right) \Phi _{B,x_{1}}\,\mathrm {d}x+ \frac{C_{0}}{4} \int \left( { \left| {\varepsilon _{x}}\right| ^{2} + \left| {\varepsilon }\right| ^{2} }\right) \Phi _{B,x_{2}}\,\mathrm {d}x\\&\quad + \delta _{1} \int \left( { \left| {\varepsilon _{x}}\right| ^{2} + \left| {\varepsilon }\right| ^{2} }\right) \left( { g - \Phi _{B,x_{1}} }\right) \,\mathrm {d}x+ \delta _{2} \int \left( { \left| {\varepsilon _{x}}\right| ^{2} + \left| {\varepsilon }\right| ^{2} }\right) \left( { h - \Phi _{B,x_{2}} }\right) \,\mathrm {d}x\\&\quad - C e^{-\frac{L}{4B}} \int \left( { \left| {\varepsilon _{x}}\right| ^{2} + \left| {\varepsilon }\right| ^{2} }\right) \,\mathrm {d}x- C e^{ -\sqrt{ 4\omega _{1}-c_{1}^{2} }\frac{L}{4} }\int \left| {\varepsilon }\right| ^{2}\,\mathrm {d}x\\&\quad - C e^{ -\sqrt{ 4\omega _{2}-c_{2}^{2} }\frac{L}{4} }\int \left| {\varepsilon }\right| ^{2}\,\mathrm {d}x\\&\ge C_1 \left\| \varepsilon \right\| _{H^1(\mathbb {R})}^{2}, \end{aligned}$$

where \(C_1 = \frac{1}{2}\min ~\left\{ {\frac{C_{0}}{4},\delta _{1},\delta _{2}}\right\} .\) This concludes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, C., Tang, X. & Xu, G. Stability of the traveling waves for the derivative Schrödinger equation in the energy space. Calc. Var. 56, 45 (2017). https://doi.org/10.1007/s00526-017-1128-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-017-1128-6

Mathematics Subject Classification

Navigation