Skip to main content
Log in

Lusin approximation for horizontal curves in step 2 Carnot groups

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

A Carnot group \(\mathbb {G}\) admits Lusin approximation for horizontal curves if for any absolutely continuous horizontal curve \(\gamma \) in \(\mathbb {G}\) and \(\varepsilon >0\), there is a \(C^1\) horizontal curve \(\Gamma \) such that \(\Gamma =\gamma \) and \(\Gamma '=\gamma '\) outside a set of measure at most \(\varepsilon \). We verify this property for free Carnot groups of step 2 and show that it is preserved by images of Lie group homomorphisms preserving the horizontal layer. Consequently, all step 2 Carnot groups admit Lusin approximation for horizontal curves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agrachev, A., Barilari, D., Boscain, U.: Introduction to Riemannian and Sub-Riemannian Geometry (From Hamiltonian Viewpoint), notes. Available at http://webusers.imj-prg.fr/~davide.barilari/

  2. Ambrosio, L., Kirchheim, B.: Rectifiable sets in metric and Banach spaces. Mathematische Annalen 318(3), 527–555 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ambrosio, L., Tilli, P.: Topics on Analysis in Metric Spaces. Oxford Lecture Series in Mathematics and Its Applications. Oxford University Press, Oxford (2004)

    MATH  Google Scholar 

  4. Bellaiche, A.: The tangent space in Sub-Riemannian geometry. J. Math. Sci. 83(4), 461–476 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Balogh, Z.M., Rickly, M., Serra Cassano, F.: Comparison of Hausdorff Measures with respect to the Euclidean and the Heisenberg Metric. Publ. Mat. 47(1), 237–259 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bonfiglioli, A., Lanconelli, E., Uguzzoni, F.: Stratified Lie Groups and Potential Theory for Their Sub-Laplacians. Springer Monographs in Mathematics. Springer, Berlin (2007)

    MATH  Google Scholar 

  7. Capogna, L., Danielli, D., Pauls, S., Tyson, J.: An introduction to the heisenberg group and the Sub-Riemannian isoperimetric problem. Birkhauser, Progress in Mathematics, vol. 259 (2007)

  8. Chow, W.: Uber systeme von linearen partiellen differentialgleichungen erster ordnung. Mathematische Annalen 117, 98–105 (1939)

    MathSciNet  MATH  Google Scholar 

  9. Coddington, E., Levinson, N.: Theory of Ordinary Differential Equations. McGraw-Hill, USA (1955)

  10. Evans, L., Gariepy, R.: Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics. CRC Press, USA (1991)

    Google Scholar 

  11. Filippov, A. F.: Differential Equations with Discontinuous Righthand Sides. Kluwer Academic Publishers, New York (1988)

  12. Franchi, B., Serapioni, R., Serra Cassano, F.: Rectifiability and Perimeter in the Heisenberg Group. Mathematische Annalen 321(3), 479–531 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Franchi, B., Serapioni, R., Serra Cassano, F.: On the structure of finite perimeter sets in step 2 carnot groups. J. Geom. Anal. 13(3), 421–466 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Franchi, B., Serapioni, R., Serra Cassano, F.: Regular hypersurfaces, intrinsic perimeter and implicit function theorem in carnot groups. Commun. Anal. Geom. 11(5), 909–944 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gromov, M.: Carnot-Caratheodory spaces seen from within. Progress Math. 144, 79–323 (1996)

    MathSciNet  MATH  Google Scholar 

  16. Ghezzi, R., Jean, F.: A new class of \({\cal H}^{1}\)-rectifiable subsets of metric spaces. Commun. Pure Appl. Anal. 12(2), 881–898 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Juillet, N., Sigalotti, M.: Pliability, or the Whitney extension theorem for curves in carnot groups. Preprint available at arXiv:1603.02639

  18. Kirchheim, B., Serra Cassano, F.: Rectifiability and parameterizations of intrinsically regular surfaces in the Heisenberg Group. Ann. Scuola Norm. Sup. Pisa, Cl.Sc (5) 3(4), 871–896 (2004)

  19. Le Donne, E.: Lecture Notes on Sub-Riemannian Geometry. Notes available at https://sites.google.com/site/enricoledonne/

  20. Magnani, V.: Differentiability and area formula on stratified lie groups. Houst. J. Math. 27(2), 297–323 (2001)

    MathSciNet  MATH  Google Scholar 

  21. Magnani, V.: Unrectifiability and rigidity in stratified groups. Arch. Math. 83(6), 568–576 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Montgomery, R.: A tour of Subriemannian geometries. Their Geodesics and Applications, American Mathematical Society, Mathematical Surveys and Monographs, vol. 91 (2006)

  23. Mattila, P., Serapioni, R., Serra Cassano, F.: Characterizations of intrinsic rectifiability in Heisenberg Groups. Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 9(4), 687–723 (2010)

  24. Pansu, P.: Metriques de Carnot-Caratheodory et Quasiisometries des Espaces Symetriques de Rang Un. Ann. Math. 129(1), 1–60 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  25. Pauls, S.D.: A notion of rectifiability modelled on carnot groups. Indiana Univ. Math. J. 53(1), 49–81 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rashevskii, P.: About connecting two points of complete non-holonomic space by admissible curve (in Russian). Uch. Zapiski Ped. Inst. Libknexta 2, 83–94 (1938)

    Google Scholar 

  27. Rifford, L.: Sub-Riemannian Geometry and Optimal Transport, Springer Briefs in Mathematics. Springer, New York (2014)

  28. Semmes, S.: On the nonexistence of bi-Lipschitz parameterizations and geometric problems about \(A_{\infty }\)- Weights. Revista Matematica Iberoamericana 12(2), 337–410 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  29. Speight, G.: Lusin Approximation and Horizontal Curves in Carnot Groups, to appear in Revista Matematica Iberoamericana. Preprint available at arXiv:1412.2531

  30. Vittone, D.: The Regularity Problem for Sub-Riemannian Geodesics. Notes available at http://cvgmt.sns.it/paper/2416/

  31. Vodopyanov, S.K., Pupyshev, I.M.: Whitney-type theorems on the extension of functions on carnot groups. Sibirsk. Mat. Zh. 47(4), 731–752 (2006)

    MathSciNet  MATH  Google Scholar 

  32. Zimmerman, S.: The Whitney Extension Theorem for \(C^1\), Horizontal Curves in \({\mathbb{H}}^n\). Preprint available at arXiv:1507.02240

Download references

Acknowledgments

Part of this work was carried out when G.S. was visiting the University of Jyvaskyla. He thanks the mathematics department at the University of Jyvaskyla for its kind hospitality. E.L.D. acknowledges the support of the Academy of Finland project no. 288501. The authors also thank a kind referee for suggesting improvements to the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gareth Speight.

Additional information

Communicated by L. Ambrosio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le Donne, E., Speight, G. Lusin approximation for horizontal curves in step 2 Carnot groups. Calc. Var. 55, 111 (2016). https://doi.org/10.1007/s00526-016-1054-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-016-1054-z

Mathematics Subject Classification

Navigation