Skip to main content
Log in

Cahn–Hilliard–Navier–Stokes systems with moving contact lines

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We consider a well-known diffuse interface model for the study of the evolution of an incompressible binary fluid flow in a two or three-dimensional bounded domain. This model consists of a system of two evolution equations, namely, the incompressible Navier-Stokes equations for the average fluid velocity u coupled with a convective Cahn–Hilliard equation for an order parameter \(\phi \). The novelty is that the system is endowed with boundary conditions which account for a moving contact line slip velocity. The existence of a suitable global energy solution is proven and the convergence of any such solution to a single equilibrium is also established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abels, H.: On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities. Arch. Ration. Mech. Anal. 194, 463–506 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abels, H.: Strong well-posedness of a diffuse interface model for a viscous, quasi-incompressible two-phase flow. SIAM J. Math. Anal. 44, 316–340 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Abels, H., Feireisl, E.: On a diffuse interface model for a two-phase flow of compressible viscous fluids. Indiana Univ. Math. J. 57, 659–698 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Abels, H., Wilke, M.: Convergence to equilibrium for the Cahn-Hilliard equation with a logarithmic free energy. Nonlinear Anal. 67, 3176–3193 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Anderson, D.M., McFadden, G.B., Wheeler, A.A.: Diffuse-interface methods in fluid mechanics, Annual review of fluid mechanics, vol. 30, pp. 139–165. Annual Reviews, Palo Alto (1998)

  6. Badalassi, V.E., Ceniceros, H.D., Banerjee, S.: Computation of multiphase systems with phase field models. J. Comput. Phys. 190, 371–397 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bao, K., Shi, Y., Sun, S., Wang, X.-P.: A finite element method for the numerical solution of the coupled Cahn-Hilliard and Navier-Stokes system for moving contact line problems. J. Comput. Phys. 231, 8083–8099 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Berti, A., Berti, V., Grandi, D.: Well-posedness of an isothermal diffusive model for binary mixtures of incompressible fluids. Nonlinearity 24, 3143–3164 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Boyer, F.: Mathematical study of multi-phase flow under shear through order parameter formulation. Asymp. Anal. 20, 175–212 (1999)

    MathSciNet  MATH  Google Scholar 

  10. Boyer, F.: Nonhomogenous Cahn-Hilliard fluids. Ann. Inst. H. Poincaré Anal. Non Linéaire 18, 225–259 (2001)

    Article  MATH  Google Scholar 

  11. Boyer, F.: A theoretical and numerical model for the study of incompressible model flows. Comput. Fluids 31, 41–68 (2002)

    Article  MATH  Google Scholar 

  12. Boyer, F., Fabrie, P.: Persistency of 2D perturbations of one-dimensional solutions for a Cahn-Hilliard flow model under high shear. Asympt. Anal. 33, 107–151 (2003)

    MathSciNet  MATH  Google Scholar 

  13. Blesgen, T.: A generalization of the Navier-Stokes equation to two-phase flows. J. Phys. D (Appl. Phys.) 32, 1119–1123 (1999)

    Article  Google Scholar 

  14. Bosia, S., Gatti, S.: Pullback exponential attractor for a Cahn-Hilliard-Navier-Stokes system in 2D. Dyn. Partial Differ. Equ. 11, 1–38 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bosia, S., Grasselli, M., Miranville, A.: On the longtime behavior of a 2D hydrodynamic model for chemically reacting binary fluid mixtures. Math. Methods Appl. Sci. 37, 726–743 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cao, C., Gal, C.G.: Global solutions for the 2D NS-CH model for a two-phase flow of viscous, incompressible fluids with mixed partial viscosity and mobility. Nonlinearity 25, 3211–3234 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cavaterra, C., Gal, C.G., Grasselli, M., Miranville, A.: Phase-field systems with nonlinear coupling and dynamic boundary conditions. Nonlinear Anal. 72, 2375–2399 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chella, R., Viñals, J.: Mixing of a two-phase fluid by a cavity flow. Phys. Rev. E 53, 3832–3840 (1996)

    Article  Google Scholar 

  19. Chepyzhov, V.V., Vishik, M.I.: Attractors for equations of mathematical physics, American Mathematical Society Colloquium Publications 49. American Mathematical Society, Providence (2002)

    MATH  Google Scholar 

  20. Cherfils, L., Miranville, A., Zelik, S.: The Cahn-Hilliard equation with logarithmic potentials. Milan J. Math. 79, 561–596 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. DussanV, E.B.: The moving contact line: the slip boundary condition. J. Fluid Mech. 77, 665–684 (1976)

    Article  Google Scholar 

  22. DussanV, E.B., Davis, S.H.: On the motion of a fluid-fluid interface along a solid surface. J. Fluid Mech. 65, 71–95 (1974)

    Article  Google Scholar 

  23. Feng, X.: Fully discrete finite element approximation of the Navier-Stokes-Cahn-Hilliard diffuse interface model for two-phase flows. SIAM J. Numer. Anal. 44, 1049–1072 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Feng, X., He, Y., Liu, C.: Analysis of finite element approximations of a phase field model for two-phase fluids. Math. Comp. 76, 539–571 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Feireisl, E., Simondon, F.: Convergence for semilinear degenerate parabolic equations in several space dimensions. J. Dynam. Differ. Equ. 12, 647–673 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Fischer, H.P., Maass, P., Dieterich, W.: Novel surface modes in spinodal decomposition. Phys. Rev. Lett. 79, 893–896 (1997)

    Article  Google Scholar 

  27. Fischer, H.P., Maass, P., Dieterich, W.: Diverging time and length scales of spinodal decomposition modes in thin flows. Europhys. Lett. 42, 49–54 (1998)

    Article  Google Scholar 

  28. Gal, C.G., Grasselli, M.: Asymptotic behavior of a Cahn-Hilliard-Navier-Stokes system in 2D. Ann. Inst. H. Poincaré Anal. Non Linéaire 27, 401–436 (2010)

  29. Gal, C.G., Grasselli, M.: Instability of two-phase flows: a lower bound on the dimension of the global attractor of the Cahn-Hilliard-Navier-Stokes system. Phys. D 240, 629–635 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Gal, C.G., Grasselli, M.: Trajectory and global attractors for binary mixtures fluid flows in 3D. Chin. Ann. Math. Ser. B 31, 655–678 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Gal, C.G., Medjo, T.: On a regularized family of models for homogeneous incompressible two-phase flows. J. Nonlinear Sci. 24, 1033–1103 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Gal, C.G., Meyries, M.: Nonlinear elliptic problems with dynamical boundary conditions of reactive and reactive-diffusive type. Proc. Lond. Math. Soc. 108, 1351–1380 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Gao, M., Wang, X.-P.: A gradient stable scheme for a phase field model for the moving contact line problem. J. Comput. Phys. 231, 1372–1386 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Gilardi, G., Miranville, A., Schimperna, G.: On the Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions. Commun. Pure Appl. Anal. 8, 881–912 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Grasselli, M., Miranville, A., Schimperna, G.: The Caginalp phase-field system with coupled dynamic boundary conditions and singular potentials. Discrete Contin. Dyn. Syst. 28, 67–98 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Gurtin, M.E., Polignone, D., Viñals, J.: Two-phase binary fluids and immiscible fluids described by an order parameter. Math. Models Meth. Appl. Sci. 6, 8–15 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  37. Heida, M., Málek, J., Rajagopal, K.R.: On the development and generalizations of Cahn-Hilliard equations within a thermodynamic framework. Z. Angew. Math. Phys. 63, 145–169 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Heida, M.: On the derivation of thermodynamically consistent boundary conditions for the Cahn–Hilliard–Navier–Stokes system. Int. J. Eng. Sci. 62, 126–156 (2013)

    Article  MathSciNet  Google Scholar 

  39. Hintermüller, M., Wegner, D.: Optimal control of a semidiscrete Cahn–Hilliard–Navier–Stokes system. SIAM J. Control Optim. 52, 747–772 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  40. Hohenberg, P.C., Halperin, B.I.: Theory of dynamic critical phenomena. Rev. Mod. Phys. 49, 435–479 (1977)

    Article  Google Scholar 

  41. Jacqmin, D.: Calculation of two-phase Navier-Stokes flows using phase-field modelling. J. Comp. Phys. 155, 96–127 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  42. Jasnow, D., Viñals, J.: Coarse-grained description of thermo-capillary flow. Phys. Fluids 8, 660–669 (1996)

    Article  MATH  Google Scholar 

  43. Kay, D., Styles, V., Welford, R.: Finite element approximation of a Cahn–Hilliard–Navier–Stokes system. Interfaces Free Bound. 10, 15–43 (2008)

    Article  MathSciNet  Google Scholar 

  44. Kenzler, R., Eurich, F., Maass, P., Rinn, B., Schropp, J., Bohl, E., Dieterich, W.: Phase separation in confined geometries: solving the Cahn–Hilliard equation with generic boundary conditions. Comput. Phys. Commun. 133, 139–157 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  45. Kim, J., Kang, K., Lowengrub, J.: Conservative multigrid methods for Cahn–Hilliard fluids. J. Comput. Phys. 193, 511–543 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  46. Kim, J.S.: Phase-field models for multi-component fluid flows. Commun. Comput. Phys. 12, 613–661 (2012)

    MathSciNet  Google Scholar 

  47. Lamorgese, A.G., Molin, D., Mauri, R.: Phase field approach to multiphase flow modeling. Milan J. Math. 79, 597–642 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  48. Lions, J.-L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris (1969)

    MATH  Google Scholar 

  49. Liu, C., Shen, J.: A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method. Phys. D 179, 211–228 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  50. Lowengrub, J., Truskinovsky, L.: Quasi-incompressible Cahn–Hilliard fluids and topological transitions. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 454, 2617–2654 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  51. Maxwell, D.: Initial data for black holes and rough spacetimes, Ph.D. thesis, University of Washington (2004)

  52. Maxwell, J.C.: On stresses in rarified gases arising from inequalities of temperature. Philos. Trans. R. Soc. 170, 704–712 (1879)

  53. Miranville, A., Zelik, S.: Exponential attractors for the Cahn-Hilliard equation with dynamic boundary conditions. Math. Models Appl. Sci. 28, 709–735 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  54. Moffatt, H.K.: Viscous and resistive eddies near a sharp corner. J. Fluid Mech. 18, 1–18 (1964)

    Article  MATH  Google Scholar 

  55. Navier, C.L.: Sur les lois de l’équilibre et du mouvement des corps élastiques. Mem. Acad. R. Sci. Inst. France 6, 369 (1827)

    Google Scholar 

  56. Onsager, L.: Reciprocal relations in irreversible processes. I. Phys. Rev. 37, 405–426 (1931)

    Article  MATH  Google Scholar 

  57. Onsager, L.: Reciprocal relations in irreversible processes. II. Phys. Rev. 38, 2265–2279 (1931)

    Article  MATH  Google Scholar 

  58. Qian, T.-Z., Wang, X., Sheng, P.: Molecular scale contact line hydrodynamics of immiscible flows. Phys. Rev. E 68, 016306 (2003)

    Article  Google Scholar 

  59. Qian, T.-Z., Wang, X., Sheng, P.: A variational approach to moving contact line hydrodynamics. J. Fluid Mech. 564, 333–360 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  60. Rybka, P., Hoffmann, K.-H.: Convergence of solutions to Cahn-Hilliard equation. Commun. Partial Differ. Equ. 24, 1055–1077 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  61. Ruiz, R., Nelson, D.R.: Turbulence in binary fluid mixtures. Phys. Rev. A 23, 3224–3246 (1981)

    Article  Google Scholar 

  62. Shen, J., Yang, X.: Energy stable schemes for Cahn–Hilliard phase-field model of two-phase incompressible flows. Chin. Ann. Math. Ser. B 31, 743–758 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  63. Shen, J., Yang, X., Yu, H.: Efficient energy stable numerical schemes for a phase field moving contact line model. J. Comput. Phys. 284, 617–630 (2015)

    Article  MathSciNet  Google Scholar 

  64. Simon, J.: Compact sets in the space \(L^{p}\left( 0,T;B\right)\). Ann. Mat. Pura Appl. 146(4), 65–96 (1987)

  65. Siggia, E.D.: Late stages of spinodal decomposition in binary mixtures. Phys. Rev. A 20, 595–605 (1979)

    Article  Google Scholar 

  66. Sprekels, J., Wu, H.: A note on parabolic equation with nonlinear dynamical boundary condition. Nonlinear Anal. 72, 3028–3048 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  67. Starovoitov, V.N.: The dynamics of a two-component fluid in the presence of capillary forces. Math. Notes 62, 244–254 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  68. Tan, Z., Lim, K.M., Khoo, B.C.: An adaptive mesh redistribution method for the incompressible mixture flows using phase-field model. J. Comput. Phys. 225, 1137–1158 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  69. Taylor, M.E.: Partial differential equations I, basic theory. Applied Mathematical Sciences, vol. 115, 2nd edn. Springer, New York (2011)

    Google Scholar 

  70. Taylor, M.E.: Partial differential equations III, Nonlinear equations. Applied Mathematical Sciences, vol. 117, 2nd edn. Springer, New York (2011)

    Google Scholar 

  71. Temam, R.: Infinite-dimensional dynamical systems in mechanics and physics, Applied Mathematical Sciences, vol. 68. Springer, New York (1997)

    Book  Google Scholar 

  72. Shi, Y., Bao, K., Wang, X.-P.: 3D adaptive finite element method for a phase field model for the moving contact line problems. Inverse Probl. Imaging 7, 947–959 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  73. Wang, X.-P., Wang, Y.-G.: The sharp interface limit of a phase field model for moving contact line problem. Methods Appl. Anal. 14, 285–292 (2007)

    MathSciNet  Google Scholar 

  74. Wu, H., Zheng, S.: Convergence to equilibrium for the Cahn–Hilliard equation with dynamic boundary conditions. J. Differ. Equations 204, 511–531 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  75. Yue, P., Zhou, C., Feng, J.J.: Sharp-interface limit of the Cahn–Hilliard model for moving contact lines. J. Fluid Mech. 645, 279–294 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  76. Zhao, L., Wu, H., Huang, H.: Convergence to equilibrium for a phase-field model for the mixture of two viscous incompressible fluids. Commun. Math. Sci. 7, 939–962 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  77. Zheng, S.: Nonlinear Evolution Equations, Pitman Ser. Monogr. Survey in Pure and Appl. Math., vol. 133. Chapman & Hall/CRC, Boca Raton (2004)

  78. Zhou, Y., Fan, J.: The vanishing viscosity limit for a 2D Cahn-Hilliard-Navier-Stokes system with a slip boundary condition. Nonlinear Anal. Real World Appl. 14, 1130–1134 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

M. Grasselli is a member of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM). We also wish to acknowledge the reviewer whose comments and important remarks have improved the initial version of the article. We thank Hao Wu for pointing out a gap in a previous proof of Theorem 3.3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Grasselli.

Additional information

Communicated by F. H. Lin.

Appendix: Derivation of the model

Appendix: Derivation of the model

In this section, we briefly recall the physical derivation of the model (1.1)–(1.10) introduced in [58, 59]. To this end, we first consider the energy functional associated with the fluid motion

$$\begin{aligned} \mathcal {F}_{NS}\left( u\right) =\int _{\Omega }\nu \left| D\left( u\right) \right| ^{2}dx+\int _{\Gamma }\frac{\beta }{2}\left| u_{\tau }\right| ^{2}dS. \end{aligned}$$
(8.1)

Here dS denotes the surface measure, while the integral over \(\Gamma \) accounts for fluid wall slip. Concerning the free energy functional stabilizing the interface separating the two fluids, we postulate

$$\begin{aligned} \mathcal {F}_{tot}\left( \phi \right) =\int _{\Omega }\left( \frac{\varepsilon }{2}\left| \nabla \phi \right| ^{2}+\varepsilon ^{-1}F\left( \phi \right) \right) dx+\int _{\Gamma }\left( \frac{\gamma }{2}\left| \nabla _{\tau }\phi \right| ^{2}+\frac{\zeta }{2}\left| \phi \right| ^{2}+G\left( \phi \right) \right) dS. \end{aligned}$$
(8.2)

Note that only the case \(\gamma =0\) was considered in [59] (and any of its references). Here a boundary contribution has been added to \(\mathcal {F} \left( \phi \right) \) [cf. (1.4)] to account for possible fluid-solid interactions taking place at the boundary. Based on the definitions of the functionals above, a hydrodynamic model for the contact line motion can be derived as follows. Let us observe now that the incompressible Navier-Stokes Eqs. (1.1)–(1.2) is nothing but the momentum equation for the (average) velocity field u. The last term \(\mu \nabla \phi \) in (1.1) accounts for stress forces at the fluid-fluid interface [61], while Eq. (1.3) is a reformulation of mass conservation (see, for instance, [59]). In order to derive the boundary conditions (1.6 )–(1.8), we also need to introduce a further dissipative functional

$$\begin{aligned} \mathcal {F}_{CH}\left( \phi \right) =\int _{\Omega }\frac{\varrho _{0}}{2} \left| \nabla \mu \right| ^{2}dx+\int _{\Gamma }\frac{1}{2l_{0}} \left| \partial _{t}^{\tau }\phi \right| ^{2}dS, \end{aligned}$$
(8.3)

in order to construct the total rate of energy dissipation, namely,

$$\begin{aligned} \mathcal {F}_{\text {dis}}\left( u,\phi \right) =\mathcal {F}_{NS}\left( u\right) +\mathcal {F}_{CH}\left( \phi \right) . \end{aligned}$$
(8.4)

Observe that \(\partial _{t}^{\tau }\phi \) [see (8.3)] denotes the material time derivative of \(\phi \) at the solid surface \(\Gamma \), i.e.,

$$\begin{aligned} \partial _{t}^{\tau }\phi =\partial _{t}\phi +u_{\tau }\cdot \nabla _{\tau }\phi . \end{aligned}$$

Note that the right-hand side of Eq. (8.4) consists of four quadratic terms corresponding to the four physically distinct sources of dissipation: the shear viscosity in the bulk, the fluid wall slipping, the bulk diffusion and the wall relaxation.

The total free energy \(\mathcal {F}_{tot}\left( \phi \right) \) rate change can be written as

$$\begin{aligned} \frac{\partial }{\partial t}\mathcal {F}_{tot}\left( \phi \left( t\right) \right) =\int _{\Omega }\mu \left( t\right) \partial _{t}\phi \left( t\right) dx+\int _{\Gamma }\mathcal {L}\left( \phi \left( t\right) \right) \partial _{t}\phi \left( t\right) dS, \end{aligned}$$
(8.5)

where \(\mu \) is the chemical potential (1.6) and \(\mathcal {L}\) is defined in (1.9). Using the Cahn–Hilliard Eq. (1.3) and the fact that \(\partial _{n}\mu =0\) on \(\Gamma \times (0,\infty ),\) we obtain from (8.5)

$$\begin{aligned} \frac{\partial }{\partial t}\mathcal {F}_{tot}\left( \phi \right) =\int _{\Omega }\left( \varrho _{0}\left| \nabla \mu \right| ^{2}-\mu u\cdot \nabla \phi \right) dx+\int _{\Gamma }\mathcal {L}\left( \phi \right) \left( \partial _{t}^{\tau }\phi -u_{\tau }\cdot \nabla _{\tau }\phi \right) dS. \end{aligned}$$
(8.6)

On the other hand, the first law of thermodynamics requires

$$\begin{aligned} \frac{\partial }{\partial t}\mathcal {F}_{tot}\left( \phi \right) =-T\frac{ \partial E}{\partial t}+\frac{\partial W}{\partial t}, \end{aligned}$$

where E and W denote the entropy and work, respectively. Here T denotes temperature which is assumed to be uniform in the fluid. Note that the entropy part \(-T\partial S/\partial t\) must arise from the bulk diffusion and the wall relaxation, while the work rate \(\partial W/\partial t \) is due to the work done by the flow at the fluid–fluid interface. More precisely, we have

$$\begin{aligned} -T\frac{\partial E}{\partial t}=\int _{\Omega }\varrho _{0}\left| \nabla \mu \right| ^{2}dx+\int _{\Gamma }\mathcal {L}\left( \phi \right) \partial _{t}^{\tau }\phi dS \end{aligned}$$

and

$$\begin{aligned} \frac{\partial W}{\partial t}=-\int _{\Omega }u\cdot \left( \mu \nabla \phi \right) dx-\int _{\Gamma }u_{\tau }\cdot \left( \mathcal {L}\left( \phi \right) \nabla _{\tau }\phi \right) dS. \end{aligned}$$
(8.7)

We can see from (8.7) that \(\mu \nabla \phi \) and \(\mathcal {L}\left( \phi \right) \nabla _{\tau }\phi \) are forces (stresses) exerted by the interface on the flow. In order to derive the correct boundary conditions for two-phase flows, one may employ Onsager’s variational principle of energy dissipation for incompressible single-phase flows (cf. [56, 57] ; see also [59, (3.1)–(3.5)]). Therefore, a hydrodynamic model for the contact-line motion for two-phase flows can be derived by minimizing

$$\begin{aligned} \mathcal {F}_{\text {dis}}\left( u,\phi \right) +\partial _{t}\mathcal {F} _{tot}\left( \phi \right) \end{aligned}$$

with respect to the rates \(\{u,\nabla \mu ,\partial _{t}^{\tau }\phi \}\) subject to the incompressibility condition (1.2) and (1.6)–(1.9) (see, for instance, [59, (3.28)–(3.32)]). It is worth mentioning that an important point of this derivation is that the uncompensated Young stress at the boundary \(\mathcal {L}\left( \phi \right) \nabla _{\tau }\phi \) must accompany, according to (8.7), the capillary force density in the bulk (i.e., the term \(\mu \nabla \phi \)), both being interfacial forces. Therefore, the term \(\mathcal {L}\left( \phi \right) \nabla _{\tau }\phi \) is simply an indicator of the fluid-fluid interfacial tension at the solid boundary \(\Gamma \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gal, C.G., Grasselli, M. & Miranville, A. Cahn–Hilliard–Navier–Stokes systems with moving contact lines. Calc. Var. 55, 50 (2016). https://doi.org/10.1007/s00526-016-0992-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-016-0992-9

Mathematics Subject Classification

Navigation