Skip to main content
Log in

On the isoperimetric problem for radial log-convex densities

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Given a smooth, radial, uniformly log-convex density e V on \({\mathbb{R}^n}\) , n ≥ 2, we characterize isoperimetric sets E with respect to weighted perimeter \({\int_{\partial E}e^{V} d \mathcal{H}^{n-1}}\) and weighted volume m = ∫ E e V as balls centered at the origin, provided \({m \in [0, m_0)}\) for some (potentially computable) m 0>0; this affirmatively answers conjecture (Rosales et al. Calc Var Part Differ Equat 31(1):27–46, 2008, Conjecture 3.12) for such values of the weighted volume parameter. We also prove that the set of weighted volumes such that this characterization holds true is open, thus reducing the proof of the full conjecture to excluding the possibility of bifurcation values of the weighted volume parameter. Finally, we show the validity of the conjecture when V belongs to a C 2-neighborhood of c|x|2 (c> 0).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acerbi, E., Fusco, N., Morini, M.: Minimality via second variation for a nonlocal isoperimetric problem. Preprint cvgmt.sns.it (2011)

  2. Almgren, F.J. Jr.: Existence and Regularity Almost Everywhere of Solutions to Elliptic Variational Problems with Constraints. Memoirs AMS, vol. 4, no. 165 (1976)

  3. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. Oxford University Press, New York (2000)

  4. Betta M.F., Brock F., Mercaldo A., Posteraro M.R.: Weighted isoperimetric inequalities on Rn and applications to rearrangements. Math. Nachr. 281(4), 466–498 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bombieri E.: Regularity theory for almost minimal currents. Arch. Ration. Mech. Anal. 78(2), 99–130 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  6. Borell C.: The Brunn-Minkowski inequality in Gauss space. Invent. Math. 30(2), 207–216 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  7. Borell, C.: The Ornstein-Uhlenbeck Velocity Process in Backward Time and Isoperimetry. Chalmers University of Technology 1986-03/ISSN 0347-2809

  8. Cañete A., Miranda M. Jr., Vittone D.: Some isoperimetric problems in planes with density. J. Geom. Anal. 20(2), 243–290 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Carlen E.A., Kerce C.: On the cases of equality in Bobkov’s inequality and Gaussian rearrangement. Calc. Var. 13(1), 1–18 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Carroll C., Jacob A., Quinn C., Walters R.: The isoperimetric problem on planes with density. Bull. Aust. Math. Soc. 78, 177–197 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cicalese, M., Leonardi, G.P.: A selection principle for the sharp quantitative isoperimetric inequality. To appear on Arch. Ration. Mech. Anal.

  12. Cianchi A., Fusco N., Maggi F., Pratelli A.: On the isoperimetric deficit in Gauss space. Am. J. Math. 133(1), 131–186 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dahlberg J., Dubbs A., Newkirk E., Tran H.: Isoperimetric regions in the plane with density rp. N. Y. J. Math. 16, 31–51 (2010)

    MathSciNet  MATH  Google Scholar 

  14. De Philippis, G., Maggi, F.: Sharp stability inequalities for the plateau problem. Preprint cvgmt.sns.it, 2012

  15. Diaz, A., Harman, N., Howe, S., Thompson, D.: isoperimetric problems in sectors with density, advances in geometry. To appear arXiv:1012.0450

  16. Ehrhard A.: Symétrisation dans l’espace de Gauss. (French). Math. Scand. 53(2), 281–301 (1983)

    MathSciNet  MATH  Google Scholar 

  17. Figalli A., Maggi F.: On the shape of liquid drops and crystals in the small mass regime. Arch. Ration. Mech. Anal. 201(1), 143–207 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Figalli A., Maggi F., Pratelli A.: A mass transportation approach to quantitative isoperimetric inequalities. Invent. Math. 182(1), 167–211 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fuglede B.: Lower estimate of the isoperimetric deficit of convex domains in R n in terms of asymmetry. Geom. Dedicata 47(1), 41–48 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fuglede B.: Stability in the isoperimetric problem for convex or nearly spherical domains in \({\mathbb{R}^n}\) . Trans. Am. Math. Soc. 314, 619–638 (1989)

    MathSciNet  MATH  Google Scholar 

  21. Fusco N., Maggi F., Pratelli A.: The sharp quantitative isoperimetric inequality. Ann. Math. 168, 941–980 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fusco N., Maggi F., Pratelli A.: On the isoperimetric problem with respect to a mixed Euclidean–Gaussian density. J. Funct. Anal. 260, 3678–3717 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Giusti, E.: Minimal Surfaces and Functions of Bounded Variation. Monographs in Mathematics, vol. 80. Birkhäuser, Basel (1984)

  24. Kolesnikov, A.V., Zhdanov, R.I.: On Isoperimetric Sets of Radially Symmetric Measures, Concentration, Functional Inequalities and Isoperimetry. Contemporary Mathematics vol. 545, pp. 123–154. AMS, Providence (2011)

  25. Maderna C., Salsa S.: Sharp estimates of solutions to a certain type of singular elliptic boundary value problems in two dimensions. Appl. Anal. 12(4), 307–321 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  26. Maggi, F.: Sets of Finite Perimeter and Geometric Variational Problems: An Introduction to Geometric Measure Theory. Cambridge Studies in Advanced Mathematics No. 135. Cambridge University Press, Cambridge (2012)

  27. Maurmann Q., & Morgan F.: Isoperimetric comparison theorems for manifolds with density. Calc. Var. 36(1), 1–5 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Morgan F.: Manifolds with density and Perelman’s proof of the Poincaré conjecture. Am. Math. Monthly 116(2), 134–142 (2009)

    Article  MATH  Google Scholar 

  29. Morgan, F.: The Log-Convex Density Conjecture. http://sites.williams.edu/Morgan/2010/04/03/the-log-convex-density-conjecture

  30. Morgan, F., Pratelli, A.: Existence of isoperimetric regions in \({\mathbb{R}^n}\) with density. Preprint arXiv:1111.5160v1

  31. Rosales C., Cañete A., Bayle V., & Morgan F.: On the isoperimetric problem in Euclidean space with density. Calc. Var. Part. Differ. Equat. 31(1), 27–46 (2008)

    Article  MATH  Google Scholar 

  32. Sudakov, V.N., Cirel’son, B.S.: Extremal Properties of Half-Spaces for Spherically Invariant Measures. (Russian) Problems in the theory of probability distributions, II. Zap. Naučn. Sem. Leninagrd. Otdel. Mat. Inst. Steklov. (LOMI) 41, vol. 165, pp. 14–24 (1974)

  33. Tamanini, I.: Regularity Results for Almost Minimal Oriented Hypersurfaces in \({\mathbb{R}^n}\) . Quaderni del Dipartimento di Matematica dell’ Università del Salento, 1 (1984) http://siba-ese.unile.it/index.php/quadmat

  34. Tamanini I.: Boundaries of Caccioppoli sets with Hölder-continuous normal vector. J. Reine Angew. Math. 334, 27–39 (1982)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Figalli.

Additional information

Communicated by L.Ambrosio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Figalli, A., Maggi, F. On the isoperimetric problem for radial log-convex densities. Calc. Var. 48, 447–489 (2013). https://doi.org/10.1007/s00526-012-0557-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-012-0557-5

Mathematics Subject Classification (2000)

Navigation