Skip to main content

Advertisement

Log in

Kinks in two-phase lipid bilayer membranes

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Common models for two-phase lipid bilayer membranes are based on an energy that consists of an elastic term for each lipid phase and a line energy at interfaces. Although such an energy controls only the length of interfaces, the membrane surface is usually assumed to be at least C 1 across phase boundaries. We consider the spontaneous curvature model for closed rotationally symmetric two-phase membranes without excluding tangent discontinuities at interfaces a priorily. We introduce a family of energies for smooth surfaces and phase fields for the lipid phases and derive a sharp interface limit that coincides with the Γ-limit on all reasonable membranes and extends the classical model by assigning a bending energy also to tangent discontinuities. The theoretical result is illustrated by numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alberti, G.: Variational models for phase transitions, an approach via Γ-convergence. In: Calculus of variations and Partial Differential Equations (Pisa, 1996), pp. 95–114. Springer, Berlin (2000)

  2. Ambrosio L., Tortorelli V.M.: Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence. Commun. Pure Appl. Math. 43(8), 999–1036 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baumgart T., Hess S.T., Webb W.W.: Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature 425, 821–824 (2003)

    Article  Google Scholar 

  4. Bellettini G., Mugnai L.: Approximation of Helfrich’s functional via diffuse interfaces. SIAM J. Math. Anal. 42(6), 2402–2433 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Braides, A.: Γ-convergence for beginners, Oxford Lecture Series in Mathematics and its Applications, vol. 22. Oxford University Press, Oxford (2002)

  6. Buttazzo G., Giaquinta M., Hildebrandt S.: One-dimensional variational problems. Oxford Lecture Series in Mathematics and its Applications, vol. 15. Oxford University Press, Oxford (1998)

    Google Scholar 

  7. Canham P.B.: The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. J. Theor. Biol. 26(1), 61–81 (1970)

    Article  Google Scholar 

  8. do Carmo, M.P.: Differential geometry of curves and surfaces. Prentice-Hall Inc., Englewood Cliffs, NJ (1976)

  9. Döbereiner H.G., Käs J., Noppl D., Sprenger I., Sackmann E.: Budding and fission of vesicles. Biophys. J. 65(4), 1396–1403 (1993)

    Article  Google Scholar 

  10. Elliott C.M., Stinner B.: Modeling and computation of two phase geometric biomembranes using surface finite elements. J. Comput. Phys. 229(18), 6585–6612 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Elliott C.M., Stinner B.: A surface phase field model for two-phase biological membranes. SIAM J. Appl. Math. 70(8), 2904–2928 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Evans E.A.: Bending resistance and chemically induced moments in membrane bilayers. Biophys. J. 14(12), 923–931 (1974)

    Article  Google Scholar 

  13. Helfrich W.: Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforsch. (C) 28(11-1), 693–703 (1973)

    Google Scholar 

  14. Helmers M. Convergence of an approximation for rotationallysymmetric two-phase lipid bilayer membranes. Preprint (submitted). http://www.iam.uni-bonn.de/users/helmers (2011)

  15. Helmers M.: Snapping elastic curves as a one-dimensional analogue of two-component lipid bilayers. Math. Models Methods Appl. Sci. 21(5), 1027–1042 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jülicher F., Lipowsky R.: Shape transformations of vesicles with intramembrane domains. Phys. Rev. E 53(3), 2670–2683 (1996)

    Article  Google Scholar 

  17. Lowengrub J., Rätz A., Voigt A.: Phase-field modeling of the dynamics of multicomponent vesicles: spinodal decomposition, coarsening, budding, and fission. Phys. Rev. E 79(3), 0311–926 (2009)

    Article  Google Scholar 

  18. Mayer U.F., Simonett G.: A numerical scheme for axisymmetric solutions of curvature-driven free boundary problems, with applications to the Willmore flow. Interface. Free Bound 4(1), 89–109 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Modica L.: The gradient theory of phase transitions and the minimal interface criterion. Arch. Ration. Mech. Anal. 98(2), 123–142 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  20. Modica, L., Mortola, S. Un esempio di Γ-convergenza. Boll. Un. Mat. Ital. B (5) 14(1), 285–299 (1977)

    Google Scholar 

  21. Seifert, U., Lipowsky, R.: Morphology of vesicles. In: Structure and Dynamics of Membranes, Handbook of Biological Physics, vol. 1, pp. 403–463. North-Holland (1995)

  22. Seifert U., Berndl K., Lipowsky R.: Shape transformations of vesicles Phase diagram for spontaneous-curvature and bilayer-coupling models. Phys. Rev. A 44(2), 1182–1202 (1991)

    Article  Google Scholar 

  23. Siegel D.P., Kozlov M.M.: The Gaussian curvature elastic modulus of N-Monomethylated dioleoylphosphatidylethanolamine: relevance to membrane fusion and lipid phase behavior. Biophys. J 87(1), 366–374 (2004)

    Article  Google Scholar 

  24. Simon, L.: Lectures on geometric measure theory. Proceedings of the Centre for Mathematical Analysis, Australian National University, vol. 3. Australian National University Centre for Mathematical Analysis, Canberra (1983)

  25. Templer R.H., Khoo B.J., Seddon J.M.: Gaussian curvature modulus of an amphiphilic monolayer. Langmuir 14(26), 7427–7434 (1998)

    Article  Google Scholar 

  26. Topping P.: Relating diameter and mean curvature for submanifolds of Euclidean space. Comment. Math. Helv. 83(3), 539–546 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tu, Z.C., Ou-Yang, Z.C.: Lipid membranes with free edges. Phys. Rev. E 68(6), 061915 (2003)

    Google Scholar 

  28. Wang X., Du Q.: Modelling and simulations of multi-component lipid membranes and open membranes via diffuse interface approaches. J. Math. Biol. 56(3), 347–371 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Helmers.

Additional information

Communicated by J. Jost.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Helmers, M. Kinks in two-phase lipid bilayer membranes. Calc. Var. 48, 211–242 (2013). https://doi.org/10.1007/s00526-012-0550-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-012-0550-z

Keywords

Mathematics Subject Classification (2000)

Navigation