Skip to main content
Log in

Smooth solutions to a class of mixed type Monge–Ampère equations

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We prove the existence of C local solutions to a class of mixed type Monge–Ampère equations in the plane. More precisely, the equation changes type to finite order across two smooth curves intersecting transversely at a point. Existence of C global solutions to a corresponding class of linear mixed type equations is also established. These results are motivated by and may be applied to the problem of prescribed Gaussian curvature for graphs, the isometric embedding problem for 2-dimensional Riemannian manifolds into Euclidean 3-space, and also transonic fluid flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bateman H.: Notes on a differential equation which occurs in the two-dimensional motion of a compressible fluid and the associated variational problems. Proc. R. Soc. Lond. Ser. A 125, 598–618 (1929)

    Article  MATH  Google Scholar 

  2. Gilbarg D., Trudinger N.: Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer, Berlin (1983)

    Book  MATH  Google Scholar 

  3. Grisvard P.: Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics, vol. 12. Pitman, Boston (1985)

    Google Scholar 

  4. Guan B., Spruck J.: The existence of hypersurfaces of constant Gauss curvature with prescribed boundary. J. Differ. Geom. 62, 259–287 (2002)

    MathSciNet  MATH  Google Scholar 

  5. Han Q.: On the isometric embedding of surfaces with Gauss curvature changing sign cleanly. Commun. Pure Appl. Math. 58, 285–295 (2005)

    Article  MATH  Google Scholar 

  6. Han Q.: Local isometric embedding of surfaces with Gauss curvature changing sign stably across a curve. Cal. Var. P.D.E. 25, 79–103 (2005)

    Article  Google Scholar 

  7. Han Q.: Local solutions to a class of Monge–Ampère equations of the mixed type. Duke Math. J. 136, 421–473 (2007)

    MathSciNet  MATH  Google Scholar 

  8. Han, Q., Hong, J.-X. (2006) Isometric Embedding of Riemannian Manifolds in Euclidean Spaces. Mathematical Surveys and Monographs, vol. 130. American Mathematical Society, Providence, RI

  9. Han Q., Khuri M.: On the local isometric embedding in \({\mathbb{R}^{3}}\) of surfaces with Gaussian curvature of mixed sign. Commun. Anal. Geom. 18(4), 649–704 (2010)

    MathSciNet  MATH  Google Scholar 

  10. Han Q., Hong J.-X., Lin C.-S.: Local isometric embedding of surfaces with nonpositive gaussian curvature. J. Differ. Geom. 63, 475–520 (2003)

    MathSciNet  MATH  Google Scholar 

  11. Han Q., Hong J.-X., Lin C.-S.: On Cauchy problems for degenerate hyperbolic equations. Trans. A.M.S. 358, 4021–4044 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hong J.-X., Zuily C.: Existence of C local solutions for the Monge–Ampère equation. Invent. Math. 89, 645–661 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  13. Khuri M.: The local isometric embedding in \({\mathbb{R}^3}\) of two-demensional Riemannian manifolds with Gaussian curvature changing sign to finite order on a curve. J. Differ. Geom. 76, 249–291 (2007)

    MathSciNet  MATH  Google Scholar 

  14. Khuri M.: Local solvability of degenerate Monge–Ampère equations and applications to geometry. Electron. J. Differ. Equ. 2007(65), 1–37 (2007)

    MathSciNet  Google Scholar 

  15. Khuri M.: Counterexamples to the local solvability of Monge–Ampère equations in the plane. Commun. PDE 32, 665–674 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Khuri, M.: On the local solvability of Darboux’s equation, Discrete Contin. Dyn. Syst. (2009), Dynamical Systems, Differential Equations and Applications. Proceedings of the 7th AIMS International Conference, suppl., 451–456

  17. Khuri M.: Boundary value problems for mixed type equations and applications. Nonlinear Anal. 74, 6405–6415 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kondrat’ev, V.-A.: Boundary value problems for elliptic equations in domains with conical or angular points. Trudy Moskov. Mat. Obshch. 16, 209–292 (1967) (in Russian); Trans. Moscow Math. Soc. 16, 227–313 (1967)

  19. Kozlov, V.-A., Maz’ya, V.-G., Rossmann, J.: Elliptic Boundary Value Problems in Domains with Point Singularities. Mathematical Surveys and Monographs, vol. 52. American Mathematical Society, Providence, RI (1997)

  20. Lin C.-S.: -The local isometric embedding in \({\mathbb{R}^3}\) of 2-dimensional Riemannian manifolds with nonnegative curvature. J. Differ. Geom. 21, 213–230 (1985)

    MATH  Google Scholar 

  21. Lin C.-S.: The local isometric embedding in \({\mathbb{R}^3}\) of two dimensional Riemannian manifolds with Gaussian curvature changing sign clearly. Commun. Pure Appl. Math. 39, 307–326 (1986)

    Article  Google Scholar 

  22. Morawetz C.: Mixed equations and transonic flow. J. Hyperbolic Differ. Equ. 1, 1–26 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Otway T.: Variational equations on mixed Riemannian–Lorentzian metrics. J. Geom. Phys. 58, 1043–1061 (1008)

    Article  MathSciNet  Google Scholar 

  24. Tricomi F.G.: Sulle equazioni lineari alle derivate parziali di secondo ordine, di tipo misto. Atti Acad. Naz. Lincei Mem. Cl. Fis. Mat. Nat. 14(5), 134–247 (1923)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Han.

Additional information

Communicated by C.S. Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, Q., Khuri, M. Smooth solutions to a class of mixed type Monge–Ampère equations. Calc. Var. 47, 825–867 (2013). https://doi.org/10.1007/s00526-012-0547-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-012-0547-7

Mathematics Subject Classification

Navigation