Skip to main content
Log in

A nonhomogeneous boundary value problem in mass transfer theory

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We prove a uniqueness result of solutions for a system of PDEs of Monge–Kantorovich type arising in problems of mass transfer theory. The results are obtained under very mild regularity assumptions both on the reference set \({\Omega\subset \mathbb{R}^n}\), and on the (possibly asymmetric) norm defined in Ω. In the special case when Ω is endowed with the Euclidean metric, our results provide a complete description of the stationary solutions to the tray table problem in granular matter theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Ambrosio L.: Lecture Notes on Optimal Transport Problems. Mathematical Aspects of Evolving Interfaces. Lecture Notes in Mathematics, vol. 1812, pp. 1–52. Springer-Verlag, Berlin (2003)

    Google Scholar 

  2. Ambrosio, L., Tilli, P.: Topics on Analysis in Metric Spaces. Oxford Lecture Series in Mathematics and its Applications, vol. 25. Oxford University Press, Oxford (2004)

  3. Aronsson G.: Interpolation under a gradient bound. J. Aust. Math. Soc. 87, 19–35 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Aronsson G., Evans L.C., Wu Y.: Fast/slow diffusion and growing sandpiles. J. Differ. Equ. 131(2), 304–335 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bertone S., Cellina A.: The existence of variations, possibly with pointwise gradient constraints. ESAIM Control Optim. Calc. Var. 13, 331–342 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bianchini S.: On the Euler–Lagrange equation for a variational problem. Discrete Contin. Dyn. Syst. 17, 449–480 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bianchini S., Gloyer M.: On the Euler–Lagrange equation for a variational problem: the general case II. Math. Z. 265(4), 889–923 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bouchitté G., Buttazzo G.: Characterization of optimal shapes and masses through Monge–Kantorovich equation. J. Eur. Math. Soc. 3, 139–168 (2001)

    Article  MATH  Google Scholar 

  9. Burago, D., Burago, Yu., Ivanov S.: A Course in Metric Geometry. Graduate Studies in Mathematics, vol. 33. American Mathematical Society, Providence (2001)

  10. Cannarsa P., Cardaliaguet P.: Representation of equilibrium solutions to the table problem for growing sandpiles. J. Eur. Math. Soc. 6, 435–464 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cannarsa P., Sinestrari C.: Semiconcave Functions, Hamilton–Jacobi Equations and Optimal Control. Progress in Nonlinear Differential Equations and their Applications, vol. 58. Birkhäuser, Boston (2004)

    Google Scholar 

  12. Cannarsa P., Mennucci A., Sinestrari C.: Regularity results for solutions of a class of Hamilton–Jacobi equations. Arch. Ration. Mech. Anal. 140, 197–223 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cannarsa P., Cardaliaguet P., Crasta G., Giorgieri E.: A boundary value problem for a PDE model in mass transfer theory: representation of solutions and applications. Calc. Var. Partial Differ. Equ. 24, 431–457 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cannarsa P., Cardaliaguet P., Sinestrari C.: On a differential model for growing sandpiles with non-regular sources. Commun. Partial Differ. Equ. 34(7–9), 656–675 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cesari L.: Optimization—Theory and Applications. Applications of Mathematics (New York), vol. 17. Springer-Verlag, New York (1983)

    Google Scholar 

  16. Crasta G., Malusa A.: The distance function from the boundary in a Minkowski space. Trans. Am. Math. Soc. 359, 5725–5759 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Crasta G., Malusa A.: On a system of partial differential equations of Monge–Kantorovich type. J. Differ. Equ. 235, 484–509 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Crasta G., Malusa A.: A sharp uniqueness result for a class of variational problems solved by a distance function. J. Differ. Equ. 243, 427–447 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Crasta G., Malusa A.: A variational approach to the macroscopic electrodynamics of anisotropic hard superconductors. Arch. Ration. Mech. Anal. 192, 87–115 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Deimling K.: Nonlinear Functional Analysis. Springer-Verlag, Berlin (1985)

    MATH  Google Scholar 

  21. Evans W.D., Harris D.J.: Sobolev embeddings for generalized ridged domains. Proc. Lond. Math. Soc. 54, 141–175 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gromov, M.: Metric structures for Riemannian and non-Riemannian spaces, english edn., Modern Birkhäuser Classics, Birkhäuser Boston Inc., Boston (2007) [Based on the 1981 French original, With appendices by Katz, M., Pansu, P., Semmes, S. Translated from the French by Sean Michael Bates]

  23. Hadeler K.P., Kuttler C.: Dynamical models for granular matter. Granul. Matter 2, 9–18 (1999)

    Article  Google Scholar 

  24. Itoh J., Tanaka M.: The Lipschitz continuity of the distance function to the cut locus. Trans. Am. Math. Soc. 353, 21–40 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li Y.Y., Nirenberg L.: The distance function to the boundary, Finsler geometry and the singular set of viscosity solutions of some Hamilton–Jacobi equations. Commun. Pure Appl. Math. 58, 85–146 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lions P.L.: Generalized Solutions of Hamilton–Jacobi Equations. Pitman, Boston (1982)

    MATH  Google Scholar 

  27. Mantegazza C., Mennucci A.C.: Hamilton–Jacobi equations and distance functions on Riemannian manifolds. Appl. Math. Optim. 47, 1–25 (2003)

    Article  MathSciNet  Google Scholar 

  28. Prigozhin L.: model of sandpile growth. Eur. J. Appl. Math. 7, 225–235 (1996)

    MathSciNet  MATH  Google Scholar 

  29. Rockafellar R.T.: Convex Analysis. Princeton University Press, Princeton, NJ (1970)

    MATH  Google Scholar 

  30. Schneider R.: Convex Bodies: The Brunn–Minkowski Theory. Cambridge University Press, Cambridge (1993)

    Book  MATH  Google Scholar 

  31. Villani, C.: Optimal Transport, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 338. Springer-Verlag, Berlin (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annalisa Malusa.

Additional information

Communicated by L. Ambrosio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crasta, G., Malusa, A. A nonhomogeneous boundary value problem in mass transfer theory. Calc. Var. 44, 61–80 (2012). https://doi.org/10.1007/s00526-011-0426-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-011-0426-7

Mathematics Subject Classification (2000)

Navigation