Skip to main content
Log in

Abstract

In this note, we prove the following generalization of a theorem of Shi and Tam (J Differ Geom 62:79–125, 2002): Let (Ω, g) be an n-dimensional (n ≥ 3) compact Riemannian manifold, spin when n > 7, with non-negative scalar curvature and mean convex boundary. If every boundary component Σ i has positive scalar curvature and embeds isometrically as a mean convex star-shaped hypersurface \({{\hat \Sigma}_i \subset \mathbb{R}^n}\), then

$$ \int\limits_{\Sigma_i} H \ d \sigma \le \int\limits_{{\hat \Sigma}_i} \hat{H} \ d {\hat \sigma} $$

where H is the mean curvature of Σ i in (Ω, g), \({\hat{H}}\) is the Euclidean mean curvature of \({{\hat \Sigma}_i}\) in \({\mathbb{R}^n}\), and where d σ and \({d {\hat \sigma}}\) denote the respective volume forms. Moreover, equality holds for some boundary component Σ i if, and only if, (Ω, g) is isometric to a domain in \({\mathbb{R}^n}\). In the proof, we make use of a foliation of the exterior of the \({\hat \Sigma_i}\)’s in \({\mathbb{R}^n}\) by the \({\frac{H}{R}}\)-flow studied by Gerhardt (J Differ Geom 32:299–314, 1990) and Urbas (Math Z 205(3):355–372, 1990). We also carefully establish the rigidity statement in low dimensions without the spin assumption that was used in Shi and Tam (J Differ Geom 62:79–125, 2002).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnowitt R., Deser S., Misner C.W.: Coordinate invariance and energy expressions in general relativity. Phys. Rev. 122(2), 997–1006 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bartnik R.: Quasi-spherical metrics and prescribed scalar curvature. J. Differ. Geom. 37(1), 31–71 (1993)

    MathSciNet  MATH  Google Scholar 

  3. Bray H.: Proof of the Riemannian Penrose inequality using the positive mass theorem. J. Differ. Geom. 59, 177–267 (2001)

    MathSciNet  MATH  Google Scholar 

  4. Bray H., Lee D.: On the Riemannian Penrose inequality in dimensions less than eight. Duke Math. J. 148(1), 81–106 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brown J., York J.: Quasilocal energy and conserved charges derived from the gravitational action. Phys. Rev. D (3) 47(4), 1407–1419 (1993)

    Article  MathSciNet  Google Scholar 

  6. Gerhardt C.: Flow of nonconvex hypersurfaces into spheres. J. Differ. Geom. 32, 299–314 (1990)

    MathSciNet  MATH  Google Scholar 

  7. Gilbarg D., Trudinger N.S.: Elliptic partial differential equations of second order, 2nd edn. Springer-Verlag, New York (1983)

    MATH  Google Scholar 

  8. Han, Q., Lin, F.: Elliptic partial differential equations. Courant Lecture Notes in Mathematics, vol. 1, (1997) MR1669352 (2001d:35035)

  9. Hang F., Wang X.: A note on a conjecture of Schroeder and Strake. Pacific Math. J. 232, 283–287 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Huisken G., Ilmanen T.: The invers mean curvature flow and the Riemannian Penrose Inequality. J. Differ. Geom. 59, 353–437 (2001)

    MathSciNet  MATH  Google Scholar 

  11. Liu C.-C.M., Yau S.-T.: Positivity of quasilocal mass. Phys. Rev. Lett. 90(23), 231102 (2003)

    Article  MathSciNet  Google Scholar 

  12. Liu C.-C.M., Yau S.-T.: Positivity of quasilocal mass II. J. Amer. Math. Soc. 19(1), 181–204 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Miao P.: Positive mass theorem on manifolds admitting corners along a hypersurface. Adv. Theor. Math. Phys. 6(6), 1163–1182 (2003)

    Google Scholar 

  14. Miao P.: On a localized Riemannian Penrose inequality. Commun. Math. Phys. 292(1), 271–284 (2009)

    Article  MATH  Google Scholar 

  15. Miao P., Shi Y.-G., Tam L.-F.: On geometric problems related to Brown–York and Liu-Yau quasilocal mass. Comm. Math. Phys. 298(2), 437–459 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Neves A.: Insufficient convergence of inverse mean curvature flow on asymptotically hyperbolic manifolds. J. Differ. Geom. 84(1), 191–229 (2010)

    MathSciNet  MATH  Google Scholar 

  17. Nirenberg L.: The Weyl and Minkowski problems in differential geoemtry in the large. Comm. Pure Appl. Math. 6, 337–394 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  18. Pogorelov, A.: Deformation of convex surfaces (Russian). Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow-Leningrad (1951)

  19. Reilly R.: Applications of the Hessian operator in a Riemannian manifold. Indiana Univ. Math. J. 26(3), 459–472 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  20. Schoen, R.: Variational Theory for the Total Scalar Curvature Functional for Riemannian Metrics and Related Topics. Topics in the Calculus of Variations. Lecture Notes in Mathematics, vol. 1365, pp. 120–154. Springer-Verlag, Berline (1987)

  21. Schoen R., Yau S.-T.: On the proof of the positive mass conjecture in general relativity. Comm. Math. Phys. 65, 45–76 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  22. Shi Y.-G., Tam L.-F.: Positive mass theorem and the boundary behaviors of compact manifolds with nonnegative scalar curvature. J. Differ. Geom. 62, 79–125 (2002)

    MathSciNet  MATH  Google Scholar 

  23. Smith B., Weinstein G.: Quasiconvex foliations and asymptotically flat metrics of non-negative scalar curvature. Comm. Anal. Geom. 12(3), 511–551 (2004)

    MathSciNet  MATH  Google Scholar 

  24. Urbas J.: On the expansion of starshaped hypersurfaces by symmetric functions of their principal curvatures. Math. Z. 205(3), 355–372 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang M.-T., Yau S.-T.: A generalization of Liu-Yau’s quasi-local mass. Comm. Anal. Geom. 15(2), 249–282 (2007)

    MathSciNet  MATH  Google Scholar 

  26. Witten E.: A new proof of the positive energy theorem. Comm. Math. Phys. 80, 381–402 (1981)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Wang.

Additional information

Communicated by G. Huisken.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eichmair, M., Miao, P. & Wang, X. Extension of a theorem of Shi and Tam. Calc. Var. 43, 45–56 (2012). https://doi.org/10.1007/s00526-011-0402-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-011-0402-2

Mathematics Subject Classification (2010)

Navigation