Skip to main content
Log in

Some homogenization results for non-coercive Hamilton–Jacobi equations

  • Original Article
  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Recently, C. Imbert and R. Monneau study the homogenization of coercive Hamilton–Jacobi Equations with a u/ε-dependence: this unusual dependence leads to a non-standard cell problem and, in order to solve it, they introduce new ideas to obtain the estimates on the oscillations of the solutions. In this article, we use their ideas to provide new homogenization results for “standard” Hamilton–Jacobi Equations (i.e. without a u/ε-dependence) but in the case of non-coercive Hamiltonians. As a by-product, we obtain a simpler and more natural proof of the results of C. Imbert and R. Monneau, but under slightly more restrictive assumptions on the Hamiltonians.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Alvarez O. (1999). Homogenization of Hamilton–Jacobi equations in perforated sets. J. Differ. Equ. 159(2): 543–577

    Article  MATH  Google Scholar 

  2. Alvarez, O., Bardi M. (2001/02). Viscosity solutions methods for singular perturbations in deterministic and stochastic control. SIAM J. Control Optim. 40(4): 1159–1188

    Article  Google Scholar 

  3. Alvarez O. and Bardi M. (2003). Singular perturbations of nonlinear degenerate parabolic PDEs: a general convergence result. Arch. Ration. Mech. Anal. 170(1): 17–61

    Article  MATH  Google Scholar 

  4. Alvarez, O., Bardi, M.: Ergodic problems in differential games. Ann. Int. Soc. Dynam. Games (to appear)

  5. Alvarez O. and Barron E.N. (2002). Homogenization in L . J. Diff. Eq. 183(1): 132–164

    Article  MATH  Google Scholar 

  6. Alvarez O. and Ishii H. (2001). Hamilton–Jacobi equations with partial gradient and application to homogenization. Comm. Partial Differ. Equ. 26(5–6): 983–1002

    Article  MATH  Google Scholar 

  7. Arisawa, M.: Ergodic problem for the Hamilton–Jacobi–Bellman equation I. Existence of the ergodic attractor. Ann. Inst. Henri Poincaré. Anal. Non Linéaire 14, 415–438 (1997)

    Article  MATH  Google Scholar 

  8. Arisawa, M.: Ergodic problem for the Hamilton–Jacobi–Bellman equation II. Ann. Inst. Henri Poincaré. Anal. Non Linéaire, 15, 1–24 (1998)

    Article  MATH  Google Scholar 

  9. Arisawa M. and Lions P.-L. (1998). On ergodic stochastic control. Comm. Partial Differ. Equ. 23(11–12): 2187–2217

    MATH  Google Scholar 

  10. Artstein Z. and Gaitsgory V. (2000). The value function of singularly perturbed control systems. Appl. Math. Optim. 41(3): 425–445

    Article  MATH  Google Scholar 

  11. Bardi, M.: On differential games with long-time-average cost (Preprint)

  12. Barles, G.: Solutions de viscosité des équations de Hamilton–Jacobi. Collection “Mathématiques et Applications” of SMAI, n°17, Springer (1994)

  13. Barles, G. (1990). Uniqueness and regularity results for first-order Hamilton–Jacobi equations. Indiana Univ. Math. J. 39(2), 443–466

    Article  MATH  Google Scholar 

  14. Barles, G., Biton, S., Ley, O. (2002). A geometrical approach to the study of unbounded solutions of quasilinear parabolic equations. Arch. Ration. Mech. Anal. 162(4), 287–325

    Article  MATH  Google Scholar 

  15. Barles, G., Lions, P.L.: Remarks on existence and uniqueness results for first-order Hamilton–Jacobi equations. Contributions to nonlinear partial differential equations, vol. II (Paris, 1985), pp. 4–15. Pitman Res. Notes Math. Ser., 155, Longman Sci. Tech., Harlow (1987)

  16. Barles G., Soner H.M. and Souganidis P.E. (1993). Front propagation and phase field theory. SIAM J. Cont. Optim. 31(2): 439–469

    Article  MATH  Google Scholar 

  17. Barles G. and Souganidis P.E. (2001). Space-time periodic solutions and long-time behavior of solutions to quasi-linear parabolic equations. SIAM J. Math. Anal. 32(6): 1311–1323

    Article  MATH  Google Scholar 

  18. Evans L.C. (1989). The perturbed test function method for viscosity solutions of nonlinear PDE. Proc. R. Soc. Edinb. Sect. A 111(3–4): 359–375

    Google Scholar 

  19. Evans L.C. (1992). Periodic homogenisation of certain fully nonlinear partial differential equations. Proc. R. Soc. Edinb. Sect. A 120(3–4): 245–265

    Google Scholar 

  20. Imbert, C., Monneau, R.: Homogenization of first-order equations with u/ε-periodic Hamiltonians. Part I: local equations (Preprint)

  21. Giga Y. and Sato M-H. (2001). A level set approach to semicontinuous viscosity solutions for Cauchy problems. Comm. Partial Diff. Eq. 26(5–6): 813–839

    Article  MATH  Google Scholar 

  22. Horie K. and Ishii H. (1998). Homogenization of Hamilton–Jacobi equations on domains with small scale periodic structure. Indiana Univ. Math. J. 47(3): 1011–1058

    Article  MATH  Google Scholar 

  23. Ishii, H.: Homogenization of the Cauchy problem for Hamilton–Jacobi equations. Stochastic analysis, control, optimization and applications, pp. 305–324. Systems Control Found. Appl., Birkhäuser Boston, Boston (1999)

  24. Ishii, H.: Almost periodic homogenization of Hamilton–Jacobi equations. International conference on differential equations vol. 1, 2 (Berlin, 1999), pp. 600–605. World Scientific Publishing, River Edge (2000)

  25. Ishii H. (1987). Perron’s method for Hamilton–Jacobi equations. Duke Math. J. 55(2): 369–384

    Article  MATH  Google Scholar 

  26. Ley O. (2001). Lower-bound gradient estimates for first-order Hamilton–Jacobi equations and applications to the regularity of propagating fronts. Adv. Differ. Equ. 6(5): 547–576

    MATH  Google Scholar 

  27. Lions, P.-L., Papanicolaou, G., Varadhan, S.R.S.: Homogenization of Hamilton–Jacobi equations (unpublished work)

  28. Souganidis P.E. (1999). Stochastic homogenization of Hamilton–Jacobi equations and some applications. Asymptot. Anal. 20(1): 1–11

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy Barles.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barles, G. Some homogenization results for non-coercive Hamilton–Jacobi equations. Calc. Var. 30, 449–466 (2007). https://doi.org/10.1007/s00526-007-0097-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-007-0097-6

Mathematics Subject Classificaion (2000)

Navigation