Skip to main content
Log in

Solutions to nonlinear Neumann problems with an inverse square potential

  • Original Article
  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Let Ω be an open bounded domain in \(\mathbb{R}^N (N\geq3)\) with smooth boundary \(\partial\Omega, 0\in\partial\Omega\). We are concerned with the critical Neumann problem

$$\left\{ \begin{array}{ll} -\Delta{u}-\mu\frac{u}{|x|^2}+\lambda u=Q(x)|u|^{2^*-2}{u} \,\,& \quad \mbox{in}\,\,\Omega,\\ \frac{\partial u}{\partial \nu}=0\,\,&\quad \mbox{on}\,\,\partial\Omega, \end{array} \right. (*) $$

where \(0 < \mu < \bar{\mu}=(\frac{N-2}{2})^2,\,\,2^*=\frac{2N}{N-2},\,\,\,\,\lambda > 0\) and Q(x) is a positive continuous function on \(\overline{\Omega}\). Using Moser iteration, we give an asymptotic characterization of solutions for (*) at the origin. Under some conditions on Q,  μ, we, by means of a variational method, prove that there exists \(\lambda_0=\lambda_0(\mu) > 0\) such that for every \(\lambda > \lambda_0\), problem (*) has a positive solution and a pair of sign-changing solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Garcia Azorero J.P. and Peral Alonso I. (1998). Hardy inequalities and some critical elliptic and parabolic problems. J. Differ. Equ. 144: 441–476

    Article  MATH  Google Scholar 

  2. Adimurthi, Mancini, G.: The Neumann problem for elliptic equations with critical nonlinearity. A tribute in honour of G. Prodi, Scuola Norm. Sup. Pisa, pp. 9–25 (1991)

  3. Mancini G., Yadava S.L. and Adimurthi (1995). The role of the mean curvature in semilinear Neumann problem involving critical exponent. Comm. Partial Differ. Equ. 20: 591–631

    Article  MATH  Google Scholar 

  4. Pacella F., Yadava S.L. and Adimurthi (1993). Interaction between the geometry of the boundary and positive solutions of a semilinear Neumann problem with nonlinearity. J. Funct. Anal. 113: 318–350

    Article  MATH  Google Scholar 

  5. Ambrosetti A. and Rabinowitz P.H. (1973). Dual variational methods in critical point theory and applications. J. Funct. Anal. 14: 349–381

    Article  MATH  Google Scholar 

  6. Yadava S.L. and Adimurthi (1995). Existence of a nonradial positive solution for the critical exponent with Neumann boundary condition. J. Differ. Equ. 104: 41–68

    Google Scholar 

  7. Brezis H. and Lieb E. (1983). Relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88: 486–490

    Article  MATH  Google Scholar 

  8. Brezis H. and Nirenberg L. (1983). Positive solutions of nonlinear elliptic equations involving critical Sobolev exponent. Comm. Pure Appl. Math. 36: 437–478

    Article  MATH  Google Scholar 

  9. Caffarelli L., Kohn R. and Nirenberg L. (1984). First order interpolation inequalities with weights, Compositio. Math. 53: 259–275

    MATH  Google Scholar 

  10. Chabrowski J. and Willem M. (2002). Least energy solutions of a critical Neumann problem with a weight. Calc. Var. PDE. 15: 421–431

    Article  MATH  Google Scholar 

  11. Chou K.S. and Chu C.W. (1993). On the best constant for a weighted Sobolev–Hardy inequality. J. Lond. Math. Soc. 48: 137–151

    Article  MATH  Google Scholar 

  12. Comte M. and Knaap M.C. (1991). Existence of solutions of elliptic equations involving critical Sobolev exponents with Neumann boundary conditions in general domains. Diff. Integral Equ. 4: 1133–1146

    MATH  Google Scholar 

  13. Comte M. and Tarantello G. (1992). A Neumann problem with crtical Sobolev exponent. Houst. J. Math. 18: 279–294

    MATH  Google Scholar 

  14. Egnell E. (1989). Elliptic boundary value problems with singular coefficients and critical nonlinearities. Indiana Univ. Math. J. 38: 235–251

    Article  MATH  Google Scholar 

  15. Ferrero A. and Gazzola F. (2001). Existence of solutions for singular critical growth semilinear elliptic equations. J. Differ. Equ. 177: 494–522

    Article  MATH  Google Scholar 

  16. Jannelli E. (1999). The role played by space dimension in elliptic critical problems. J. Differ. Equ. 156: 407–426

    Article  MATH  Google Scholar 

  17. Lions, P.L.: The concentration-compactness principle in the calculus of variations: the limit case. Rev. Mat. Iberoamericana. 1, 145–201; 45–121 (1985)

    Google Scholar 

  18. Rabinowitz, P.: Minimax methods in critical points theory with applications to differential equations. CBMS series, no. 65, Providence, RI (1986)

  19. Smets D. (2005). Nonlinear Schrödinger equations with Hardy potential and critical nonlinearities. Trans. Am. Math. Soc. 357: 2909–2938

    Article  MATH  Google Scholar 

  20. Tarantello G. (1993). Multiplicity results for an inhomogenous Neumann problem with critical exponent. Manuscripta Math. 81: 57–78

    Article  MATH  Google Scholar 

  21. Tarantello G. (1992). Nodal solutions of semilinear elliptic equations with critical exponent. Diff. Integral Equ. 5: 25–42

    MATH  Google Scholar 

  22. Wang X. (1991). Neumann problems of semiliner elliptic equations involving critical Sobolev exponent. J. Differ. Equ. 93: 283–316

    Article  MATH  Google Scholar 

  23. Willem M. (1996). Minimax Theorems. Birkhäuser, Boston

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pigong Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, P., Liu, Z. Solutions to nonlinear Neumann problems with an inverse square potential. Calc. Var. 30, 315–352 (2007). https://doi.org/10.1007/s00526-007-0090-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-007-0090-0

Mathematics Subject Classification (2000)

Navigation