Skip to main content
Log in

Lipschitzianity of optimal trajectories for the Bolza optimal control problem

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper we investigate Lipschitz continuity of optimal solutions for the Bolza optimal control problem under Tonelli’s type growth condition. Such regularity being a consequence of normal necessary conditions for optimality, we propose new sufficient conditions for normality of state-constrained nonsmooth maximum principles for absolutely continuous optimal trajectories. Furthermore we show that for unconstrained problems any minimizing sequence of controls can be slightly modified to get a new minimizing sequence with nice boundedness properties. Finally, we provide a sufficient condition for Lipschitzianity of optimal trajectories for Bolza optimal control problems with end point constraints and extend a result from (J. Math. Anal. Appl. 143, 301–316, 1989) on Lipschitzianity of minimizers for a classical problem of the calculus of variations with discontinuous Lagrangian to the nonautonomous case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alberti G., Serra Cassano F.(1994): Non-occurrence of gap for one-dimemsional autonomous functionals Calculus of Variations, Homogenization and Continuum Mechanics. World Scientific, Singapore

    Google Scholar 

  2. Ambrosio L., Ascenzi O.(1991): Hölder continuity of solutions of one dimensional Lagrange problems of the calculus of variations. Ricerche Math. 40(2): 311–319

    MATH  MathSciNet  Google Scholar 

  3. Ambrosio L., Ascenzi O., Buttazzo G.(1989): Lipschitz regularity for minimizers of integral functionals with highly discontinuous integrands. J. Math. Anal. Appl. 143: 301–316

    Article  MathSciNet  Google Scholar 

  4. Aubin J.-P., Frankowska H.(1990): Set-Valued Analysis. Birkhäuser, Boston

    MATH  Google Scholar 

  5. Cannarsa, P., Frankowska, H., Marchini, E.M.: Existence and Lipschitz regularity of solutions to Bolza problems in optimal control (2006) (in press)

  6. Castaing C., Valadier M. (1977): Convex Analysis and Measurable Mutifunctions. Springer, Berlin Heidelberg New York

    Google Scholar 

  7. Cellina A.(2004): The classical problem of the calculus of variations in the autonomous case: relaxation and lipschitzianity of solutions. Trans. Am. Math. Soc. 356(1):415–426

    Article  MATH  MathSciNet  Google Scholar 

  8. Cellina A., Ferriero A.(2003): Existence of lipschitzian solutions to the classical problem of the calculus of variations in the autonomous case. Ann. Inst. H. Poincaré Anal. Non Linéaire, 20(6):911–919

    Article  MATH  MathSciNet  Google Scholar 

  9. Cellina A., Ferriero A., Marchini E.M.(2003): Reparametrizations and approximate values of integrals of the calculus of variations. J. Diff. Equa. 193(2):374–384

    Article  MATH  MathSciNet  Google Scholar 

  10. Cesari L.(1983): Optimization, Theory and Applications. Springer, Berlin, Heidelberg New York

    MATH  Google Scholar 

  11. Cheng C.-W., Mizel V.J.(1996): On the Lavrentiev phenomenon for optimal control problems with second-order dynamics. SIAM J. Control Optim. 34(6): 2172–2179

    Article  MATH  MathSciNet  Google Scholar 

  12. Clarke F.H.(1976): The generalized problem of Bolza. SIAM J. Control Optim. 14(4): 683–699

    Article  Google Scholar 

  13. Clarke F.H.(1983): Optimization and Nonsmooth Analysis. Wiley-Interscience, New York

    Google Scholar 

  14. Clarke F.H., Vinter R.B.(1985): Regularity properties of solutions to the basic problem in the calculus of variations. Trans. Am. Math. Soc. 289: 73–98

    Article  MATH  MathSciNet  Google Scholar 

  15. Clarke F.H., Vinter R.B.(1990): Regularity properties of optimal controls. SIAM J. Control Optim. 28(4): 980–997

    Article  MATH  MathSciNet  Google Scholar 

  16. Dal Maso G., Frankowska H.(2003): Autonomous integral functionals with discontinuous nonconvex integrands: Lipschitz regularity of minimizers, DuBois-Reymond necessary conditions, and Hamilton–Jacobi equations Regularity properties of optimal controls. Appl. Math. Optim. 48(1): 39–66

    Article  MATH  MathSciNet  Google Scholar 

  17. Frankowska H.(2006): Regularity of minimizers and of adjoint states in optimal control under state constraints. J. Convex Anal. 13, 299–328

    Google Scholar 

  18. Galbraith G.N., Vinter R.B.(2003): Lipschitz continuity of optimal control for state constrained problems. SIAM J. Control Optim. 42(5): 1727–1744

    Article  MATH  MathSciNet  Google Scholar 

  19. Lavrentiev M.(1926): Sur quelques problemes du calcul des variations. Ann. Matem. Pura Appl. 4, 7–28

    Article  Google Scholar 

  20. Manià B. (1934): Sopra un esempio di Lavrentieff. Boll. Un. Matem. Ital. 13, 147–153

    MATH  Google Scholar 

  21. Marcellini P., Sbordone C.(1983): On the existence of minima of multiple integrals of the calculus of variations. J.Math. Pures Appl. 62: 1–9

    MATH  MathSciNet  Google Scholar 

  22. Rampazzo F., Vinter R.B.(2000): Degenerate optimal control problems with state constraints. SIAM J. Control Optim. 39(4): 989–1007

    Article  MATH  MathSciNet  Google Scholar 

  23. Sarychev A.V., Torres D.F.M.(2000): Lipschitzian regularity of the minimizers for optimal control problems with control-affine dynamics. Appl. Math. Optim. 41(2): 237–254

    Article  MATH  MathSciNet  Google Scholar 

  24. Serrin J., Varberg D.E.(1969): A general chain rule for derivatives and the change of variable formula for the Lebesgue integral. Am. Math. Mon. 76, 514–520

    Article  MATH  MathSciNet  Google Scholar 

  25. Torres D.F.M.(2003): Lipschitzian regularity of the minimizing trajectories for nonlinear optimal control problems. Math. Control Signals Syst. 162–3: 158–174

    MathSciNet  Google Scholar 

  26. Vinter R.B.(1983): The equivalence of “strong calmness” and “calmness” in optimal control theory. J. Math. Anal. Appl. 96, 153–179

    Article  MATH  MathSciNet  Google Scholar 

  27. Vinter R.B.(2000): Optimal control. Birkhäuser, Boston

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Frankowska.

Additional information

Communicated by L.Ambrosio

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frankowska, H., Marchini, E.M. Lipschitzianity of optimal trajectories for the Bolza optimal control problem. Calc. Var. 27, 467–492 (2006). https://doi.org/10.1007/s00526-006-0037-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-006-0037-x

Keywords

AMS Mathematics Subject Classification (2000)

Navigation