Skip to main content
Log in

A chain rule in \(L^{1}\left({\operatorname*{div};\Omega}\right)\) and its applications to lower semicontinuity

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract.

A chain rule in the space \(L^{1}\left(\operatorname*{div};\Omega\right) \) is obtained under weak regularity conditions. This chain rule has important applications in the study of lower semicontinuity problems for general functionals of the form \(\int_{\Omega}f(x,u,\nabla u) dx\) with respect to strong convergence in \(L^{1}\left(\Omega\right) \) . Classical results of Serrin and of De Giorgi, Buttazzo and Dal Maso are extended and generalized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acerbi, E., Fusco, N.: Semicontinuity problems in the calculus of variations. Arch. Rat. Mech. Anal. 86, 125-145 (1984)

    MathSciNet  MATH  Google Scholar 

  2. Ambrosio, L.: New lower semicontinuity results for integral functionals. Rend. Accad. Naz. Sci. XL, 11, 1-42 (1987)

    Google Scholar 

  3. Ambrosio, L., Dal Maso, G.: A general chain rule for distributional derivatives. Proc. Amer. Math. Soc. 108, 691-702 (1990)

    MathSciNet  MATH  Google Scholar 

  4. Ambrosio, L., Fusco, N., Pallara, D.: Functions of bounded variation and free discontinuity problems. Oxford University Press, Inc. New York, 2000

  5. Anzellotti, G.: Pairings between measures and bounded functions and compensated compactness. Ann. Mat. Pura Appl. 135, 293-318 (1983)

    MathSciNet  MATH  Google Scholar 

  6. Baiocchi, C., Capelo, A.: Variational and quasivariational inequalities. Wiley-Interscience, 1983

  7. Ball, J.M., Kirchheim B., Kristensen, J.: Regularity of quasiconvex envelopes. Calc. Var. Partial Differ. Equ. 11, 333-359 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bellettini, G., Bouchitté G., Fragalá, I.: BV functions with respect to a measure and relaxation of metric integral functionals. J. Convex Anal. 6(2), 349-366 (1999)

    MATH  Google Scholar 

  9. Besicovitch, A.S.: On the fundamental geometrical properties of linearly measurable plane sets of points I. Math. Ann. 98, 422-464 (1928), II, Math. Ann. 115, 296-329 (1938), III, Math. Ann. 116, 349-357 (1939)

    MATH  Google Scholar 

  10. Boccardo, L., Murat, F.: Remarques sur l’homogénéisation de certain problémes quasilinéaires. Portugalie Math. 41, 535-562 (1982)

    MATH  Google Scholar 

  11. Bouchitté, G., Dal Maso, G.: Integral representation and relaxation of convex local functionals on \(BV(\Omega)\). Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 20(4), 483-533 (1993)

    Google Scholar 

  12. Bruckner, A.: Differentiation of real functions. CRM monograph series, Amer. Math. Soc., 1994

  13. Bruckner, A., Rosenfeld, M.: A theorem on approximate directional derivatives. Ann. Scuola Norm. Sup. Pisa XXII, 343-350 (1968)

  14. Černý, R., Malý, J.: Counterexample to lower semicontinuity in Calculus of Variations. Math. Z. 248, 689-694 (2001)

    MathSciNet  Google Scholar 

  15. Černý, R., Malý, J.: Yet more counterexample to lower semicontinuity in Calculus of Variations. J. Convex Analysis (to appear)

  16. Chen, G., Frid, H.: Divergence-measure fields and hyperbolic conservation laws. Arch. Ration. Mech. Anal. 147(2), 89-118 (1999)

    Article  MATH  Google Scholar 

  17. Choquet, G.: Application des propriétés descriptives de la fonction contingent á la théorie des fonctions de variable réelle et á la géométrie différentielle des variétés cartésiennes. J. Math. Pures Appl., IX. Sér. 26, 115-226 (1947)

    Google Scholar 

  18. Dal Maso, G.: Integral representation on\(BV(\Omega )\)of\(\Gamma\)-limits of variational integrals. Manuscripta Math. 30, 387-416 (1980)

    MATH  Google Scholar 

  19. Dal Maso, G., Lefloch P.G., Murat, F.: Definition and weak stability of nonconservative products. J. Math. Pures Appl. 74, 483-548 (1995)

    MATH  Google Scholar 

  20. De Cicco, V.: A lower semicontinuity result for functionals defined on\(BV(\Omega)\). Ricerche di Mat. 39, 293-325 (1990)

    Google Scholar 

  21. De Cicco, V.: Lower semicontinuity for certain integral functionals on \(BV(\Omega)\). Boll. U.M.I. 5-B, 291-313 (1991)

  22. De Cicco, V., Fusco N., Verde, A.: On L 1−lower semicontinuity in BV. To appear

  23. De Giorgi, E.: Teoremi di semicontinuitá del Calcolo delle Variazioni. Istituto Nazionale di Alta Matematica, 1968-1969

  24. De Giorgi, E., Buttazzo G., Dal Maso, G.: On the lower semicontinuity of certain integral functions. Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Natur., Rend. 74, 274-282 (1983)

    Google Scholar 

  25. Eisen, G.: A counterexample for some lower semicontinuity results. Math. Z. 162, 241-243 (1978)

    MathSciNet  MATH  Google Scholar 

  26. Ekeland, I., Temam, R.: Convex analysis and variational problems. North-Holland 1976

  27. Evans, L.C., Gariepy, R.F.: Measure theory and fine properties of functions. CRC Press 1992

  28. Federer, H.: The \(\left( \phi,k\right)\)-rectifiable subsets of n space. Trans. Amer. Math. Soc. bf 62, 114-192 (1947)

    MATH  Google Scholar 

  29. Federer, H.: Geometric measure theory. Springer 1969

  30. Fonseca, I., Leoni, G.: Some remarks on lower semicontinuity. Indiana Univ. Math. J. 49, 617-635 (2000)

    MathSciNet  MATH  Google Scholar 

  31. Fonseca, I., Leoni, G.: On lower semicontinuity and relaxation. Proc. R. Soc. Edinb., Sect. A, Math. 131, 519-565 (2001)

    Google Scholar 

  32. Fusco, N.: Dualitá e semicontinuitá per integrali del tipo dell’area. Rend. Accad. Sci. Fis. Mat., IV. Ser. 46, 81-90 (1979)

    Google Scholar 

  33. Fusco, N., Giannetti F., Verde, A.: A remark on the L 1−lower semicontinuity for integral functionals in BV. (to appear)

  34. Gavioli, A.: Necessary and sufficient conditions for the lower semicontinuity of certain integral functionals. Ann. Univ. Ferrara Sez. VII Sc. Mat. XXXIV, 219-236 (1988)

  35. Giaquinta, M., Modica G., Soucek, J.: Cartesian currents in the calculus of variations I. Cartesian currents. Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge. 37. Berlin: Springer. xxiv, 1998

  36. Gori, M., Marcellini, P.: An extension of a Serrin’s semicontinuity Theorem. J. Convex Analysis (to appear)

  37. Gori, M., Maggi, F., Marcellini, P.: On some sharp conditions for lower semicontinuity in L 1. Differential and Integral Equations 16, 51-76 (2003)

    MathSciNet  Google Scholar 

  38. Kohn, R.V., Temam, R.: Dual spaces of stresses and strains, with applications to Hencky plasticity. Appl. Math. Optimization 10, 1-35 (1983)

    MathSciNet  MATH  Google Scholar 

  39. Liu, F.C.: A Luzin type property of Sobolev functions, Indiana Univ. Math. J. 26, 645-651 (1977)

    MATH  Google Scholar 

  40. Malý, J., Swanson, D., Ziemer, W.P.: The coarea formula for Sobolev mappings. (to appear)

  41. Marcus, M., Mizel, V.J.: Absolute continuity on tracks and mappings of Sobolev spaces. Arch. rat. Mech. Anal. 45, 294-320 (1972)

    MATH  Google Scholar 

  42. Marcus, M., Mizel, V.J.: Continuity of certain Nemitsky operators on Sobolev spaces and the chain rule. J. Analyse Math. 28, 303-334 (1975)

    MATH  Google Scholar 

  43. Marcus, M., Mizel, V.J.: Complete characterization of functions which act, via superposition, on Sobolev spaces. Trans. Amer. Math. Soc. 251, 187-218 (1979)

    MathSciNet  MATH  Google Scholar 

  44. Morrey, C.B.: Multiple integrals in the calculus of variations. Springer 1966

  45. Saks, S.: Theory of the integral, 2nd revised ed. Engl. translat. by L. C. Young. New York, G. E. Stechert & Co. VI, 1937

  46. Serrin, J.: Unpublished

  47. Serrin, J.: On the definition and properties of certain variational integrals. Trans. Amer. Math. Soc. 161, 139-167 (1961)

    Google Scholar 

  48. Serrin, J., Varberg, D.: A general chain rule for derivatices and the change of variables formula for the Lebesgue integral. Am. Math. Mon. 76, 514-520 (1969)

    MATH  Google Scholar 

  49. Tartar, L.: Compensated compactness and applications to partial differential equations, Nonlinear analysis and mechanics. Heriot-Watt Symp., Vol. 4, Edinburgh 1979, Res. Notes Math. 39, 136-212 (1979)

  50. White, B.: A new proof of Federer’s Structure Theorem for k-dimensional subsets of \(\mathbb{R}^{N}\). J. Amer. Math. Soc. 11, 693-701 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  51. Ziemer, W.: Weakly differential functions. Springer 1989

Download references

Author information

Authors and Affiliations

Authors

Additional information

Received: 1 June 2002, Accepted: 7 January 2003, Published online: 6 June 2003

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cicco, V.D., Leoni, G. A chain rule in \(L^{1}\left({\operatorname*{div};\Omega}\right)\) and its applications to lower semicontinuity. Cal Var 19, 23–51 (2003). https://doi.org/10.1007/s00526-003-0192-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-003-0192-2

Keywords

Navigation