Skip to main content
Log in

Fixed-time adaptive fuzzy SOSM controller design with output constraint

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

A fixed-time adaptive fuzzy second-order sliding mode (SOSM) approach has been designed to handle the problem of nonlinear systems with output constraints. According to the advantages of using fuzzy logic systems, the unknown bounds of uncertainties can be approached dynamically. The problem of output constraints has been well handled by constructing a barrier Lyapunov function. Next, with the help of adding a power integrator technique and adaptive fuzzy control, a fixed-time adaptive fuzzy SOSM controller is designed for the considered systems. In addition to the above, the controller can not only promote the sliding variables to converge to the origin in fixed time, but also stabilize the variables in the constrained range. In other words, under the proposed method, the systems can be stable in a specified time no matter how the initial value changes. Lastly, a numerical example is used to verify the performance of the proposed SOSM control tactic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The authors declare that the data supporting the results of this study are available within the article.

References

  1. Li H, Wang J, Du H, Karimi H (2018) Adaptive sliding mode control for takagi–sugeno fuzzy systems and its applications. IEEE Trans Fuzzy Syst 26(2):531–542

    Article  Google Scholar 

  2. Hou Q, Ding S (2022) Finite-time extended state observer based super-twisting sliding mode controller for PMSM drives with inertia identification. IEEE Trans Transport Electrif 8(2):1918–1929

    Article  Google Scholar 

  3. Da F (2008) Fuzzy neural network sliding mode control for long delay time systems based on fuzzy prediction. Neural Comput Appl 17(5):531–539

    Article  Google Scholar 

  4. Ding S, Mei K, Yu X (2021) Adaptive second-order sliding mode control: a Lyapunov approach. IEEE Trans Autom Control 67(10):5392–5399

    Article  MathSciNet  Google Scholar 

  5. Liu L, Ding S, Yu X (2021) Second-order sliding mode control design subject to an asymmetric output constraint. IEEE Trans Circuits Syst-II Express Briefs 68(4):1278–1282

    Article  Google Scholar 

  6. Levant A (1993) Sliding order and sliding accuracy in sliding mode control. Int J Control 58(6):1247–1263

    Article  MathSciNet  MATH  Google Scholar 

  7. Meghni B, Dib D, Azar AT (2017) A second-order sliding mode and fuzzy logic control to optimal energy management in wind turbine with battery storage. Neural Comput Appl 28(6):1417–1434

    Article  Google Scholar 

  8. Meng Q, Qian C, Liu R (2018) Dual-rate sampled-data stabilization for active suspension system of electric vehicle. Int J Robust Nonlinear Control 28(5):1610–1623

    Article  MathSciNet  MATH  Google Scholar 

  9. Mei K, Ding S (2022) HOSM controller design with asymmetric output constraints. Sci China Inf Sci 65:189202

    Article  MathSciNet  Google Scholar 

  10. Basin M, Rodriguez-Ramirez P, Ding S, Dominic S (2015) A nonhomogeneous super-twisting algorithm for systems of relative degree more than one. J Franklin Ins-Eng Appl Math 352(4):1364–1377

    Article  MathSciNet  MATH  Google Scholar 

  11. Lee J, Kim S, Han J (2002) Pilot symbol initiated sub-optimal sequence estimation algorithm for QAM signals. Electron Lett 38(17):972–974

    Article  Google Scholar 

  12. Liu K, Dao M, Inoue T (2006) An exponentially epsilon-convergent control algorithm for chained systems and its application to automatic parking systems. IEEE Trans Control Syst Technol 14(6):1113–1126

    Article  Google Scholar 

  13. Ding S, Levant A, Li S (2016) Simple homogeneous sliding-mode controller. Automatica 67(5):22–23

    Article  MathSciNet  MATH  Google Scholar 

  14. Ding S, Hou Q, Wang H (2022) Disturbance-observer-based second-order sliding mode controller for speed control of PMSM drives. IEEE Trans Energy Convers. https://doi.org/10.1109/TEC.2022.3188630

    Article  Google Scholar 

  15. Levant A (2005) Quasi-continuous high-order sliding-mode controllers. IEEE Trans Control Syst Technol 50(11):1812–1816

    Article  MathSciNet  MATH  Google Scholar 

  16. Fang L, Ding S, Park J, Ma L (2022) Adaptive fuzzy control for non-triangular stochastic high-order nonlinear systems subject to asymmetric output constraints. IEEE Trans Cybern 52(2):1280–1291

    Article  Google Scholar 

  17. Qu H, Li D, Zhang R, Yang SH, Gao F (2020) A more general incremental inter-agent learning adaptive control for multiple identical processes in mass production. Neurocomputing 397:70–93

    Article  Google Scholar 

  18. Sun J, Yi J, Pu Z (2022) Fixed-time adaptive fuzzy control for uncertain nonstrict-feedback systems with time-varying constraints and input saturations. IEEE Trans Fuzzy Syst 30(4):1114–1128

    Article  Google Scholar 

  19. Chang EC, Wu RC, Zhu K, Chen GY (2018) Adaptive neuro-fuzzy inference system-based grey time-varying sliding mode control for power conditioning applications. Neural Comput Appl 30(3):699–707

    Article  Google Scholar 

  20. Wang R, Zhang Y, Chen Y, Chen X, Xi L (2020) Fuzzy neural network-based chaos synchronization for a class of fractional-order chaotic systems: an adaptive sliding mode control approach. Nonlinear Dyn 100(2):1275–1287

    Article  MATH  Google Scholar 

  21. Zhang M, Zhang Y, Ouyang H, Ma C, Cheng X (2020) Adaptive integral sliding mode control with payload sway reduction for 4-DOF tower crane systems. Nonlinear Dyn 99(4):2727–2741

    Article  MATH  Google Scholar 

  22. Mei K, Ding S, Yu X (2022) Generalized super-twisting algorithm. IEEE Trans Cybern. https://doi.org/10.1109/TCYB.2022.3188877

    Article  Google Scholar 

  23. Ding S, Zhang B, Mei K, Park JH (2022) Adaptive fuzzy SOSM controller design with output constraints. IEEE Trans Fuzzy Syst 30(7):2300–2311

    Article  Google Scholar 

  24. Liu M, Zhang L, Shi P, Zhao Y (2018) Fault estimation sliding mode observer with digital communication constraints. IEEE Trans Autom Control 63(10):3434–3441

    Article  MathSciNet  MATH  Google Scholar 

  25. Cao L, Xiao B, Golestani M (2020) Robust fixed-time attitude stabilization control of flexible spacecraft with actuator uncertainty. Nonlinear Dyn 100(3):2505–2519

    Article  Google Scholar 

  26. Chan J, Lee T, Tan C (2020) A sliding mode observer for robust fault reconstruction in a class of nonlinear non-infinitely observable descriptor systems. Nonlinear Dyn 101(2):1023–1036

    Article  Google Scholar 

  27. Andrieu V, Praly L, Astolfi A (2008) Homogeneous approximation, recursive observer design, and output feedback. SIAM J Control Optim 47(4):1814–1850

    Article  MathSciNet  MATH  Google Scholar 

  28. Polyakov A (2011) Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Trans Autom Control 57(8):2106–2110

    Article  MathSciNet  MATH  Google Scholar 

  29. Cruz-Zavala E, Moreno J, Fridman L (2012) Uniform sliding mode controllers and uniform sliding surfaces. IMA J Math Control Inf 29(4):491–505

    Article  MathSciNet  MATH  Google Scholar 

  30. Dvir Y, Levant A (2015) Accelerated twisting algorithm. IEEE Trans Autom Control 60(10):2803–2807

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhang L, Wang Y (2019) Fixed-time sliding mode control for uncertain robot manipulators. IEEE Access 7:149750–149763

    Article  Google Scholar 

  32. Ton C, Petersen C (2018) Continuous fixed-time sliding mode control for spacecraft with flexible appendages. IFAC-PapersOnLine 51(12):1–5

    Article  Google Scholar 

  33. Zhang L, Wei C, Jing L, Cui N (2018) Fixed-time sliding mode attitude tracking control for a submarine-launched missile with multiple disturbances. Nonlinear Dyn 93(4):2543–2563

    Article  MATH  Google Scholar 

  34. Mei K, Ding S, Chen C (2022) Fixed-time stabilization for a class of output-constrained nonlinear systems. IEEE Trans Syst Man Cybern Syst 52(10):6498–6510

    Article  Google Scholar 

  35. Polyakov A (2011) Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Trans Autom Control 57(8):2106–2110

    Article  MathSciNet  MATH  Google Scholar 

  36. Ding S, Park J, Chen C (2020) Second-order sliding mode controller design with output constraint. Automatica 112:108704

    Article  MathSciNet  MATH  Google Scholar 

  37. Hou Q, Ding S, Yu X (2022) A super-twisting-like fractional controller for SPMSM drive system. IEEE Trans Industr Electron 69(9):9376–9384

    Article  Google Scholar 

  38. Shtessel Y, Edwards C, Fridman L, Levant A (2014) Sliding mode control and observation. Springer, Berlin

    Book  Google Scholar 

  39. Cheng J, Park J, Wu Z, Yan H (2021) Ultimate boundedness control for networked singularly perturbed systems with deception attacks: a Markovian communication protocol approach. IEEE Trans Netw Sci Eng 9(2):445–456

    Article  MathSciNet  Google Scholar 

  40. Chen C, Sun Z (2020) A unified approach to finite-time stabilization of high-order nonlinear systems with anasymmetric output constraint. Automatica 111:108581

    Article  MATH  Google Scholar 

  41. Mei K, Ding S, Zheng W (2022) Fuzzy adaptive SOSM based control of a type of nonlinear systems. IEEE Trans Circuits Syst II-Express Briefs 69(3):1342–1346

    Google Scholar 

  42. Aldana-López R, Gómez-Gutiérrez D, Jiménez-Rodríguez E, Sánchez-Torres JD, Defoort M (2019) Enhancing the settling time estimation of a class of fixed-time stable systems. Int J Robust Nonlinear Control 29(12):4135–4148

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The study was supported in part by the National Natural Science Foundation of China under Grant 61973142 and Grant 62203188, in part by the Natural Science Foundation of Jiangsu Province under Grant BK20220517, in part by China Postdoctoral Science Foundation under Grant 2022M721386, in part by the Fundamental Research Funds for the Central Universities under Grant 2242022k30038, in part by the Jiangsu Province and Education Ministry Co-sponsored Synergistic Innovation Center of Modern Agricultural Equipment under Grant XTCX2015, and in part by the Key Laboratory of Measurement and Control of Complex Systems of Engineering, Ministry of Education, Southeast University under Grant MCCSE2022A02.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Keqi Mei or Shihong Ding.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Ma, L., Mei, K. et al. Fixed-time adaptive fuzzy SOSM controller design with output constraint. Neural Comput & Applic 35, 9893–9905 (2023). https://doi.org/10.1007/s00521-023-08224-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-023-08224-6

Keywords

Navigation