Skip to main content
Log in

LRATD: a lightweight real-time abnormal trajectory detection approach for road traffic surveillance

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Occasions such as stalled vehicles or crashes led by abnormal trajectories should be instantly identified and then dealt with quickly by the city traffic management system for the sake of road safety. However, a fast and accurate automatic detection system based on machine learning in general meets with great challenges from the shortage of recorded accident data, resulting in low detection accuracy. Many existing studies implement a two-level detection approach: stalled vehicles are detected at the stationary level, while abnormal trajectories are detected at the mobile level. This paper proposes a novel triple-layer framework to distribute these two levels to three parallel layers for maximum efficiency. A straightforward background extraction algorithm is applied at the beginning of this framework for motion-stationary distribution. Layer 1 implements a lightweight optical-flow-based feature extraction algorithm to convert the mobile visual features to learnable data. With a clustering algorithm that learns the common trajectories in an unsupervised manner, abnormal trajectories are detected in Layer 2. Simultaneously, in Layer 3, a custom-trained object detection algorithm is applied to detect the stall/crashed vehicles. The computational efficiency is improved and the detection accuracy is boosted. Experiments conducted on Nvidia AI City Challenge Dataset demonstrate the effectiveness of our LRATD (Lightweight Real-Time Abnormal Trajectory Detection framework) in terms of \(104\%\) gain in detection speed compared to the fastest entry, while achieving 0.935 S4-Score, only \(2.1\%\) less than the current state-of-the-art method. Overall, the performance of LRATD opens the possibility of its real-life application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

The data used and evaluated in this study are available in Nvidia AI City Challenge [53] and the UC-DETRAC dataset [81]. Output examples of LRATD are included in the supplementary materials.

References

  1. Abdallah A, Gouiffès M, Lacassagne L (2016) A modular system for global and local abnormal event detection and categorization in videos. Mach Vis Appl 27:463–481. https://doi.org/10.1007/s00138-016-0752-z

    Article  Google Scholar 

  2. Aboah A, Shoman M, Mandal V, Davami S, Adu-Gyamfi Y, Sharma A (2021) A vision-based system for traffic anomaly detection using deep learning and decision trees. CoRR arXiv:2104.06856

  3. Adam A, Rivlin E, Shimshoni I, Reinitz D (2008) Robust real-time unusual event detection using multiple fixed-location monitors. IEEE Trans Pattern Anal Mach Intell 30(3):555–560. https://doi.org/10.1109/TPAMI.2007.70825

    Article  Google Scholar 

  4. Al-Nawashi M, Al-hazaimeh O, Saraee M (2017) A novel framework for intelligent surveillance system based on abnormal human activity detection in academic environments. Neural Comput Appl. https://doi.org/10.1007/s00521-016-2363-z

    Article  Google Scholar 

  5. Al-Smadi M, Abdulrahim K, Seman K, Abdul Salam R (2020) A new spatio-temporal background-foreground bimodal for motion segmentation and detection in urban traffic scenes. Neural Comput Appl 32:1–17. https://doi.org/10.1007/s00521-019-04458-5

    Article  Google Scholar 

  6. Andrade E, Blunsden S, Fisher R (2005) Characterisation of optical flow anomalies in pedestrian traffic. In: The IEE international symposium on imaging for crime detection and prevention, 2005. ICDP 2005., 73–78 https://doi.org/10.1049/ic:20050073

  7. Bai S, He Z, Lei Y, Wu W, Zhu C, Sun M, Yan J (2019) Traffic anomaly detection via perspective map based on spatial-temporal information matrix. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR) workshops

  8. Bansod S, Nandedkar A (2017) Detection and localization of anomalies from videos based on optical flow magnitude and direction. https://doi.org/10.2991/iccasp-16.2017.68

  9. Bewley A, Ge Z, Ott L, Ramos F, Upcroft B (2016) Simple online and realtime tracking. CoRR arXiv:1602.00763

  10. Biradar KM, Gupta A, Mandal M, Vipparthi SK (2019) Challenges in time-stamp aware anomaly detection in traffic videos. CoRR arXiv:1906.04574

  11. Buch N, Velastin SA, Orwell J (2011) A review of computer vision techniques for the analysis of urban traffic. IEEE Trans Intell Transp Syst 12(3):920–939. https://doi.org/10.1109/TITS.2011.2119372

    Article  Google Scholar 

  12. Cai Z, Vasconcelos N (2017) Cascade R-CNN: delving into high quality object detection. CoRR arXiv:1712.00726

  13. Chang MC, Chiang CK, Tsai CM, Chang YK, Chiang HL, Wang YA, Chang SY, Li YL, Tsai MS, Tseng HY (2020) Ai city challenge 2020—computer vision for smart transportation applications. In: 2020 IEEE/CVF Conference on computer vision and pattern recognition workshops (CVPRW), pp 2638–2647. https://doi.org/10.1109/CVPRW50498.2020.00318

  14. Chang MC, Wei J, Zhu ZA, Chen YM, Hu CS, Jiang MX, Chiang CK (2019) Ai city challenge 2019—city-scale video analytics for smart transportation. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR) workshops

  15. Chang MC, Wei Y, Song N, Lyu S (2018) Video analytics in smart transportation for the aic’18 challenge. In: 2018 IEEE/CVF conference on computer vision and pattern recognition workshops (CVPRW), pp 61–617. https://doi.org/10.1109/CVPRW.2018.00016

  16. Chen J, Ding G, Yang Y, Han W, Xu K, Gao T, Zhang Z, Ouyang W, Cai H, Chen Z (2021) Dual-modality vehicle anomaly detection via bilateral trajectory tracing

  17. Chong YS, Tay YH (2017) Abnormal event detection in videos using spatiotemporal autoencoder. CoRR arXiv:1701.01546

  18. Comaniciu D, Meer P (2002) Mean shift: a robust approach toward feature space analysis. IEEE Trans Pattern Anal Mach Intell 24(5):603–619. https://doi.org/10.1109/34.1000236

    Article  Google Scholar 

  19. Doshi K, Yilmaz Y (2020) Fast unsupervised anomaly detection in traffic videos. In: 2020 IEEE/CVF Conference on computer vision and pattern recognition workshops (CVPRW), pp 2658–2664. https://doi.org/10.1109/CVPRW50498.2020.00320

  20. Doshi K, Yilmaz Y (2021) An efficient approach for anomaly detection in traffic videos. CoRR arXiv:2104.09758

  21. Feng W, Ji D, Wang Y, Chang S, Ren H, Gan W (2018) Challenges on large scale surveillance video analysis, pp 69–697. https://doi.org/10.1109/CVPRW.2018.00017

  22. Giannakeris P, Kaltsa V, Avgerinakis K, Briassouli A, Vrochidis S, Kompatsiaris I (2018) Speed estimation and abnormality detection from surveillance cameras. In: 2018 IEEE/CVF conference on computer vision and pattern recognition workshops (CVPRW), pp 93–936. https://doi.org/10.1109/CVPRW.2018.00020

  23. Girshick RB (2015) Fast R-CNN. CoRR arXiv:1504.08083

  24. Hassaballah M, Awad A (2020) Deep learning in computer vision: principles and application. CRC Press, Boca Raton. https://doi.org/10.1201/9781351003827

    Book  Google Scholar 

  25. Hassaballah M, Kenk MA, Muhammad K, Minaee S (2021) Vehicle detection and tracking in adverse weather using a deep learning framework. IEEE Trans Intell Transp Syst 22:4230–4242

    Article  Google Scholar 

  26. He K, Gkioxari G, Dollár P, Girshick RB (2017) Mask R-CNN. CoRR arXiv:1703.06870

  27. Hospedales T, Gong S, Xiang T (2012) Video behaviour mining using a dynamic topic model. IJCV 98:303–323. https://doi.org/10.1007/s11263-011-0510-7

    Article  MathSciNet  MATH  Google Scholar 

  28. Huang J, Rathod V, Sun C, Zhu M, Korattikara A, Fathi A, Fischer I, Wojna Z, Song Y, Guadarrama S, Murphy K (2016) Speed/accuracy trade-offs for modern convolutional object detectors. CoRR arXiv:1611.10012

  29. Jeong H, Yoo Y, Yi K, Choi J (2014) Two-stage online inference model for traffic pattern analysis and anomaly detection. Mach Vis Appl 25:1501–1517. https://doi.org/10.1007/s00138-014-0629-y

    Article  Google Scholar 

  30. Jin X, Han J (2010) K-means clustering. Springer, Boston, pp 563–564. https://doi.org/10.1007/978-0-387-30164-8_425

    Book  Google Scholar 

  31. Jocher G, Stoken A, Borovec J, NanoCode012 ChristopherSTAN Changyu, L, Laughing tkianai Hogan, A, lorenzomammana yxNONG, AlexWang1900 Diaconu L, Marc wanghaoyang0106, ml5ah Doug, Ingham F, Frederik Guilhen Hatovix Poznanski J, Fang J, Yu L, changyu98 Wang M, Gupta N, Akhtar O, PetrDvoracek Rai P (2020) ultralytics/yolov5: v3.1—bug fixes and performance improvements. https://doi.org/10.5281/zenodo.4154370

  32. Kaltsa V, Briassouli A, Kompatsiaris I, Strintzis MG (2014) Swarm-based motion features for anomaly detection in crowds. In: 2014 IEEE international conference on image processing (ICIP), pp 2353–2357. https://doi.org/10.1109/ICIP.2014.7025477

  33. Kuettel D, Breitenstein MD, Van Gool L, Ferrari V (2010) What’s going on? discovering spatio-temporal dependencies in dynamic scenes. In: 2010 IEEE computer society conference on computer vision and pattern recognition, pp 1951–1958. https://doi.org/10.1109/CVPR.2010.5539869

  34. Kumaran SK, Dogra DP, Roy PP (2019) Anomaly detection in road traffic using visual surveillance: a survey. CoRR arXiv:1901.08292

  35. Lee DG, Suk HI, Park SK, Lee SW (2015) Motion influence map for unusual human activity detection and localization in crowded scenes. IEEE Trans Circuits Syst Video Technol 25(10):1612–1623. https://doi.org/10.1109/TCSVT.2015.2395752

    Article  Google Scholar 

  36. Lee S, Kim HG, Ro YM (2018) STAN: spatio-temporal adversarial networks for abnormal event detection. CoRR arXiv:1804.08381

  37. Li Y, Wu J, Bai X, Yang X, Tan X, Li G, Wen S, Zhang H, Ding E (2020) Multi-granularity tracking with modularlized components for unsupervised vehicles anomaly detection. In: 2020 IEEE/CVF conference on computer vision and pattern recognition workshops (CVPRW), pp 2501–2510. https://doi.org/10.1109/CVPRW50498.2020.00301

  38. Lin T, Goyal P, Girshick RB, He K, Dollár P (2017) Focal loss for dense object detection. CoRR arXiv:1708.02002

  39. Lin T, Maire M, Belongie SJ, Bourdev LD, Girshick RB, Hays J, Perona P, Ramanan D, Dollár P, Zitnick CL (2014) Microsoft COCO: common objects in context. CoRR arXiv:1405.0312

  40. Lin W, Zhou Y, Xu H, Yan J, Xu M, Wu J, Liu Z (2017) A tube-and-droplet-based approach for representing and analyzing motion trajectories. IEEE Trans Pattern Anal Mach Intell 39(8):1489–1503. https://doi.org/10.1109/TPAMI.2016.2608884

    Article  Google Scholar 

  41. Liu W, Anguelov D, Erhan D, Szegedy C, Reed SE, Fu C, Berg AC (2015) SSD: single shot multibox detector. CoRR arXiv:1512.02325

  42. Liu W, Luo W, Lian D, Gao S (2017) Future frame prediction for anomaly detection—a new baseline. CoRR arXiv:1712.09867

  43. Loy CC, Xiang T, Gong S (2011) Stream-based active unusual event detection. In: Kimmel R, Klette R, Sugimoto A (eds) Computer Vision—ACCV 2010. Springer, Berlin, pp 161–175

    Chapter  Google Scholar 

  44. Lu C, Shi J, Jia J (2013) Abnormal event detection at 150 fps in matlab. In: 2013 IEEE International Conference on Computer Vision, pp 2720–2727. https://doi.org/10.1109/ICCV.2013.338

  45. Lucas B, Kanade T (1981) An iterative image registration technique with an application to stereo vision (ijcai)

  46. Luo W, Liu W, Gao S (2017) A revisit of sparse coding based anomaly detection in stacked rnn framework. In: 2017 IEEE International conference on computer vision (ICCV), pp 341–349. https://doi.org/10.1109/ICCV.2017.45

  47. Ma X, Wu J, Xue S, Yang J, Sheng QZ, Xiong H (2021) A comprehensive survey on graph anomaly detection with deep learning. CoRR arXiv:2106.07178

  48. Mahadevan V, Li W, Bhalodia V, Vasconcelos N (2010) Anomaly detection in crowded scenes. In: 2010 IEEE computer society conference on computer vision and pattern recognition, pp 1975–1981. https://doi.org/10.1109/CVPR.2010.5539872

  49. Mahalakshi V, Anumol KP, Kokiladeepa M (2016) Abnormal visual events detection using optical flow orientation histogram

  50. Mao T, Zhang W, He H, Lin Y, Kale V, Stein A, Kostic Z (2018) Aic2018 report: Traffic surveillance research. In: 2018 IEEE/CVF conference on computer vision and pattern recognition workshops (CVPRW), pp 85–857. https://doi.org/10.1109/CVPRW.2018.00019

  51. Medel JR, Savakis AE (2016) Anomaly detection in video using predictive convolutional long short-term memory networks. CoRR arXiv:1612.00390

  52. Mehran R, Oyama A, Shah M (2009) Abnormal crowd behavior detection using social force model. In: 2009 IEEE conference on computer vision and pattern recognition, pp 935–942. https://doi.org/10.1109/CVPR.2009.5206641

  53. Naphade M, Tang Z, Chang MC, Anastasiu DC, Sharma A, Chellappa R, Wang S, Chakraborty P, Huang T, Hwang JN, Lyu S (2019) The 2019 ai city challenge. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR) workshops

  54. Nguyen KT, Hoang TH, Tran MT, Le TN, Bui NM, Do TL, Vo-Ho VK, Luong QA, Tran MK, Nguyen TA, Truong TD, Nguyen VT, Do MN (2019) Vehicle re-identification with learned representation and spatial verification and abnormality detection with multi-adaptive vehicle detectors for traffic video analysis. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR) workshops

  55. Pang G, Yan C, Shen C, van den Hengel A, Bai X (2020) Self-trained deep ordinal regression for end-to-end video anomaly detection. CoRR arXiv:2003.06780

  56. Pathak D, Sharang A, Mukerjee A (2015) Anomaly localization in topic-based analysis of surveillance videos. In: 2015 IEEE winter conference on applications of computer vision, pp 389–395. https://doi.org/10.1109/WACV.2015.58

  57. Peri N, Khorramshahi P, Rambhatla SS, Shenoy V, Rawat S, Chen JC, Chellappa R (2020) Towards real-time systems for vehicle re-identification, multi-camera tracking, and anomaly detection. In: 2020 IEEE/CVF conference on computer vision and pattern recognition workshops (CVPRW), pp 2648–2657. https://doi.org/10.1109/CVPRW50498.2020.00319

  58. Ranjith R, Athanesious JJ, Vaidehi V (2015) Anomaly detection using dbscan clustering technique for traffic video surveillance. In: 2015 Seventh international conference on advanced computing (ICoAC), pp 1–6. https://doi.org/10.1109/ICoAC.2015.7562795

  59. Reddy V, Sanderson C, Lovell BC (2011) Improved anomaly detection in crowded scenes via cell-based analysis of foreground speed, size and texture. In: CVPR 2011 workshops, pp 55–61. https://doi.org/10.1109/CVPRW.2011.5981799

  60. Redmon J, Divvala SK, Girshick RB, Farhadi A (2015) You only look once: Unified, real-time object detection. CoRR arXiv:1506.02640

  61. Redmon J, Farhadi A (2018) Yolov3: an incremental improvement. CoRR arXiv:1804.02767

  62. Ren S, He K, Girshick RB, Sun J (2015) Faster R-CNN: towards real-time object detection with region proposal networks. CoRR arXiv:1506.01497

  63. Sandhan T, Sethi A, Srivastava T, Choi JY (2013) Unsupervised learning approach for abnormal event detection in surveillance video by revealing infrequent patterns. In: 2013 28th International conference on image and vision computing New Zealand (IVCNZ 2013), pp 494–499. https://doi.org/10.1109/IVCNZ.2013.6727064

  64. Shine L, Vaishnav MA, Jiji CV (2020) Fractional data distillation model for anomaly detection in traffic videos. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR) workshops

  65. Shine L, Edison A, JCV (2019) A comparative study of faster r-cnn models for anomaly detection in 2019 ai city challenge. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR) workshops

  66. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556

  67. Sultani W, Chen C, Shah M (2018) Real-world anomaly detection in surveillance videos. CoRR arXiv:1801.04264

  68. Szegedy C, Liu W, Jia Y, Sermanet P, Reed SE, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2014) Going deeper with convolutions. CoRR arXiv:1409.4842

  69. Tang Z, Naphade M, Liu M, Yang X, Birchfield S, Wang S, Kumar R, Anastasiu DC, Hwang J (2019) Cityflow: A city-scale benchmark for multi-target multi-camera vehicle tracking and re-identification. CoRR arXiv:1903.09254

  70. Tran MT, Nguyen TV, Hoang TH, Le TN, Nguyen KT, Dinh DT, Nguyen TA, Nguyen HD, Hoang XN, Nguyen TT, Vo-Ho VK, Do TL, Nguyen L, Le MQ, Nguyen-Dinh HP, Pham TT, Nguyen XV, Nguyen ER, Tran QC, Tran H, Dao H, Tran MK, Nguyen QT, Nguyen TP, Vu-Le TA, Diep GH, Do MN (2020) itask—intelligent traffic analysis software kit. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR) workshops

  71. Ullah H, Ullah M (2019) A hybrid social influence model for pedestrian motion segmentation. Neural Comput Appl. https://doi.org/10.1007/s00521-018-3527-9

    Article  Google Scholar 

  72. Varadarajan J, Emonet R, Odobez JM (2013) A sequential topic model for mining recurrent activities from long term video logs. Int J Comput Vis. https://doi.org/10.1007/s11263-012-0596-6

    Article  MathSciNet  MATH  Google Scholar 

  73. Wang G, Wang Y, Zhang H, Gu R, Hwang J (2018) Exploit the connectivity: multi-object tracking with trackletnet. CoRR arXiv:1811.07258

  74. Wang G, Yuan X, Zheng A, Hsu HM, Hwang JN (2019) Anomaly candidate identification and starting time estimation of vehicles from traffic videos. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR) workshops

  75. Wang H, Wu J, Hu W, Wu X (2019) Detecting and assessing anomalous evolutionary behaviors of nodes in evolving social networks. ACM Trans Knowl Discov Data. https://doi.org/10.1145/3299886

    Article  Google Scholar 

  76. Wang J, Fu W, Lu H, Ma S (2014) Bilayer sparse topic model for scene analysis in imbalanced surveillance videos. IEEE Trans Image Process 23(12):5198–5208. https://doi.org/10.1109/TIP.2014.2363408

    Article  MathSciNet  MATH  Google Scholar 

  77. Wang J, Xia L, Hu X, Xiao Y (2019) Abnormal event detection with semi-supervised sparse topic model. Neural Comput Appl. https://doi.org/10.1007/s00521-018-3417-1

    Article  Google Scholar 

  78. Wang X, Ma X, Grimson W (2009) Unsupervised activity perception in crowded and complicated scenes using hierarchical bayesian models. IEEE Trans Pattern Anal Mach Intell 31(3):539–555. https://doi.org/10.1109/TPAMI.2008.87

    Article  Google Scholar 

  79. Wei J, Zhao J, Zhao Y, Zhao Z (2018) Unsupervised anomaly detection for traffic surveillance based on background modeling. In: 2018 IEEE/CVF conference on computer vision and pattern recognition workshops (CVPRW), pp 129–1297. https://doi.org/10.1109/CVPRW.2018.00025

  80. Wen J, Lai Z, Ming Z, Wong WK, Zhong Z (2017) Directional gaussian model for automatic speeding event detection. IEEE Trans Inf Forensics Secur 12(10):2292–2307. https://doi.org/10.1109/TIFS.2017.2705623

    Article  Google Scholar 

  81. Wen L, Du D, Cai Z, Lei Z, Chang M, Qi H, Lim J, Yang M, Lyu S (2015) DETRAC: A new benchmark and protocol for multi-object tracking. CoRR arXiv:1511.04136

  82. Wojke N, Bewley A, Paulus D (2017) Simple online and realtime tracking with a deep association metric. CoRR arXiv:1703.07402

  83. Wu J, Wang X, Xiao X, Wang Y (2021) Box-level tube tracking and refinement for vehicles anomaly detection. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR) workshops, pp 4112–4118

  84. Wu S, Moore BE, Shah M (2010) Chaotic invariants of lagrangian particle trajectories for anomaly detection in crowded scenes. In: 2010 IEEE computer society conference on computer vision and pattern recognition, pp 2054–2060. https://doi.org/10.1109/CVPR.2010.5539882

  85. Wu S, Moore BE, Shah M (2010) Chaotic invariants of lagrangian particle trajectories for anomaly detection in crowded scenes. In: 2010 IEEE computer society conference on computer vision and pattern recognition, pp 2054–2060. https://doi.org/10.1109/CVPR.2010.5539882

  86. Xie S, Zhang X, Cai J (2019) Video crowd detection and abnormal behavior model detection based on machine learning method. Neural Comput Appl. https://doi.org/10.1007/s00521-018-3692-x

    Article  Google Scholar 

  87. Xu Y, Ouyang X, Cheng Y, Yu S, Xiong L, Ng CC, Pranata S, Shen S, Xing J (2018) Dual-mode vehicle motion pattern learning for high performance road traffic anomaly detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR) workshops

  88. Zhao Y, Wu W, He Y, Li Y, Tan X, Chen S (2021) Good practices and A strong baseline for traffic anomaly detection. CoRR arXiv:2105.03827

  89. Zhong H, Shi J, Visontai M (2004) Detecting unusual activity in video. In: Proceedings of the 2004 IEEE computer society conference on computer vision and pattern recognition, 2004. CVPR 2004., 2, II–II . https://doi.org/10.1109/CVPR.2004.1315249

  90. Zivkovic Z (2004) Improved adaptive gaussian mixture model for background subtraction. In: Proceedings of the 17th international conference on pattern recognition, 2004. ICPR 2004., 2, 28–31 2. https://doi.org/10.1109/ICPR.2004.1333992

  91. Zivkovic Z, van der Heijden F (2006) Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recognit Lett 27(1636734P):773–780. https://doi.org/10.1016/j.patrec.2005.11.005

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Key Research and Development Project No.2019YFC1511003, National Natural Science Foundation of China (NSFC) No.61803004, Aeronautical Science Foundation of China No.20161375002 through grants for our project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keyan Ren.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (avi 0 KB)

Supplementary file 2 (avi 0 KB)

Supplementary file 3 (avi 0 KB)

Supplementary file 4 (mp4 0 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Ren, K. LRATD: a lightweight real-time abnormal trajectory detection approach for road traffic surveillance. Neural Comput & Applic 34, 22417–22434 (2022). https://doi.org/10.1007/s00521-022-07626-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-022-07626-2

Keywords

Navigation