Skip to main content
Log in

A modified firefly algorithm applying on multi-objective radial-based function for blasting

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Modifying the metaheuristics as a striking alternative of basic algorithms is outstanding and efficient scientific approach in optimization of engineering problems to improve robustness and convergence rate. Firefly algorithm (FA) is one of the new metaheuristics inspired by the flashing behavior of fireflies, where the performance of each randomly generated solution on objective function is evaluated by the brightness. In the current paper, a modified firefly algorithm (MFA) was introduced using expectation value and generalized weighted average of a random brightness and then evaluated with different benchmark functions. Since brightness varies with movements of fireflies, the parameter settings can adaptively be tuned for different problems. The capability of the MFA then in hybridizing with a developed automated multi-objective radial-based function network (MORBF) was examined. In blasting engineering, multi-objective models covering the peak particle velocity (PPV) and the vibration frequency (Fvib) due to providing more insight on safety criteria significantly are essential and great of interested. The hybrid MORBF-MFA then was applied on 78 blasting data comprising stemming, burden, spacing, total charge, distance, and charge per delay to provide more accurate predictive model. Detailed executed analyses through different metrics showed 1.01% and 2.43% improvement in hybrid MORBF-MFA corresponding to PPV and Fvib over MORBF-FA. The observed results approved that the introduced MFA as a reliable and feasible tool with accurate enough response can effectively be applied to multi-objective problems. Implemented sensitivity analyses scored the distance and burden as the most and least influences factors on predicted outputs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Abbaszadeh Shahri A, Asheghi R (2018) Optimized developed artificial neural network-based models to predict the blast-induced ground vibration. Innov Infrastruct Solut. https://doi.org/10.1007/s41062-018-0137-4

    Article  Google Scholar 

  2. Abbaszadeh Shahri A, Pashamohammadi F, Asheghi R, Abbaszadeh Shahri H (2021) Automated intelligent hybrid computing schemes to predict blasting induced ground vibration. Eng Comput. https://doi.org/10.1007/s00366-021-01444-1

    Article  Google Scholar 

  3. Abbaszadeh Shahri A, Asheghi R, Khorsand Zak M (2021) A hybridized intelligence model to improve the predictability level of strength index parameters of rocks. Neural Comput Appl 33:3841–3854. https://doi.org/10.1007/s00521-020-05223-9

    Article  Google Scholar 

  4. Abbaszadeh Shahri A, Maghsoudi Moud F, Mirfallah Lialestani S (2020) A hybrid computing model to predict rock strength index properties using support vector regression. Eng Comput. https://doi.org/10.1007/s00366-020-01078-9

    Article  Google Scholar 

  5. Abbaszadeh Shahri A, Larsson S, Johansson F (2016) Updated relations for the uniaxial compressive strength of marlstones based on P-wave velocity and point load index test. Innov Infrastruct Solut 1:17. https://doi.org/10.1007/s41062-016-0016-9

    Article  Google Scholar 

  6. Adel-Basset M, Abdel-Fatah L, Sangaiah AK (2018) Metaheuristic algorithms: a comprehensive review. Computational intelligence for multimedia big data on the cloud with engineering applications. Intell Data-Cent Syst. https://doi.org/10.1016/B978-0-12-813314-9.00010-4

    Article  Google Scholar 

  7. Agresti A (1990) Categorical data analysis. Wiley, New York

    MATH  Google Scholar 

  8. Alvarez-Vigil AE, Gonzalez-Nicieza C, Lopez Gayarre F, Alvarez-Fernandez MI (2012) Predicting blasting propagation velocity and vibration frequency using artificial neural networks. Int J Rock Mech Min Sci 55:108–116. https://doi.org/10.1016/j.ijrmms.2012.05.002

    Article  Google Scholar 

  9. Arora S, Dey K (2010) Estimation of near-field peak particle velocity. J Geol Min Res 2(4):68–73

    Google Scholar 

  10. Antanasijevic D, Pocajt V, Perić-Grujić A, Ristićb M (2018) Multiple-input–multiple-output general regression neural networks model for the simultaneous estimation of traffic-related air pollutant emissions. Atmos Pollut Res 9(2):388–397. https://doi.org/10.1016/j.apr.2017.10.011

    Article  Google Scholar 

  11. Asheghi R, Abbaszadeh Shahri A, Khorsand Zak M (2019) Prediction of uniaxial compressive strength of different quarried rocks using metaheuristic algorithm. Arab J Sci Eng 44:8645–8659. https://doi.org/10.1007/s13369-019-04046-8

    Article  Google Scholar 

  12. Asheghi R, Hosseini SA, Sanei M, Abbaszadeh Shahri A (2020) Updating the neural network sediment load models using different sensitivity analysis methods: a regional application. J Hydroinf 22(3):562–577. https://doi.org/10.2166/hydro.2020.098

    Article  Google Scholar 

  13. Avellan K, Beloptpcanova E, Puurunen M (2017) Measuring, monitoring and prediction of vibration effects in rock masses in near-structure blasting. Procedia Eng 191:504–511. https://doi.org/10.1016/j.proeng.2017.05.210

    Article  Google Scholar 

  14. Barford NC (1985) Experimental measurements: precision, error, and truth. Wiley, New York

    Google Scholar 

  15. Baykasoglu A, Ozsoydan FB (2014) An improved firefly algorithm for solving dynamic multidimensional knapsack problems. Expert Syst Appl 41(8):3712–3725. https://doi.org/10.1016/j.eswa.2013.11.040

    Article  Google Scholar 

  16. Bielza C, Li G, Larranaga P (2011) Multi-dimensional classification with bayesian networks. Int J Approx Reason 52(6):705–727. https://doi.org/10.1016/j.ijar.2011.01.007

    Article  MathSciNet  MATH  Google Scholar 

  17. Bochani H, Varando G, Bielza C, Larranaga P (2015) A survey on multi-output regression. WIREs Data Min Knowl Discov 5:216–233. https://doi.org/10.1002/widm.1157

    Article  Google Scholar 

  18. Berk RA (2008) Statistical learning from a regression perspective. Springer, New York. https://doi.org/10.1007/978-3-319-44048-4

    Book  MATH  Google Scholar 

  19. Bradley AP (1997) The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recogn 30(7):1145–1159. https://doi.org/10.1016/S0031-3203(96)00142-2

    Article  Google Scholar 

  20. Broomhead DS, Lowe D (1988) Multivariable functional interpolation and adaptive networks. Complex Syst 2:321–355

    MathSciNet  MATH  Google Scholar 

  21. Dk B, Nguyen T, Chou JS, Nguyen-Xuan H, Ngo TD (2018) A modified firefly algorithm-artificial neural network expert system for predicting compressive and tensile strength of high-performance concrete. Constr Build Mater 180:320–333. https://doi.org/10.1016/j.conbuildmat.2018.05.201

    Article  Google Scholar 

  22. Chou JS, Ngo NT (2017) Modified firefly algorithm for multidimensional optimization in structural design problems. Struct Multidisc Optim 55:2013–2028. https://doi.org/10.1007/s00158-016-1624-x

    Article  Google Scholar 

  23. Dekking MF, Kraaikamp C, Lopuhaä P, Meester LE (2005) A modern introduction to probability and statistics. Springer, London. https://doi.org/10.1007/1-84628-168-7

    Book  MATH  Google Scholar 

  24. Deshamukhya T, Nath R, Hazarika SA, Bhanja D, Nath S (2019) A modified firefly algorithm to maximize heat dissipation of a rectangular porous fin in heat exchangers exposed to both convective and radiative environment. Proc Inst Mech Eng Part E J Process Mech Eng 233(6):1203–1216. https://doi.org/10.1177/0954408919861244

    Article  Google Scholar 

  25. Devore JL, Berk KN (2012) Modern mathematical statistics with applications. Springer, New York. https://doi.org/10.1007/978-1-4614-0391-3

    Book  MATH  Google Scholar 

  26. Dowding CH (1985) Blast vibration monitoring and control. Prentice-Hall, Englewoods Cliffs

    Google Scholar 

  27. Dutta R, Ganguli R, Mani V (2011) Exploring isospectral spring-mass systems with firefly algorithm. In Proc R Soc A 467:1–20. https://doi.org/10.1098/rspa.2011.0119

    Article  MathSciNet  MATH  Google Scholar 

  28. Esmaeilabadi R, Abasszadeh Shahri A, Behzadafshar K, Gheirati A, Nasrabadi JN (2015) Frequency content analysis of the probable earthquake in Kopet Dagh region- Northeast of Iran. Arab J Geosci 8:3833–3844. https://doi.org/10.1007/s12517-014-1446-3

    Article  Google Scholar 

  29. Faritha Banu A, Chandrasekar C (2013) An optimized approach of modified bat algorithm to record deduplication. Int J Comput Appl 62(1):10–15. https://doi.org/10.5120/10043-4627

    Article  Google Scholar 

  30. Fawcett T (2006) An introduction to ROC analysis. Pattern Recogn Lett 27(8):861–874. https://doi.org/10.1016/j.patrec.2005.10.010

    Article  MathSciNet  Google Scholar 

  31. Fister I, Yang XS, Brest J (2013) A comprehensive review of firefly algorithms. Swarm Evolut Comput 13:34–46. https://doi.org/10.1016/j.swevo.2013.06.001

    Article  Google Scholar 

  32. Foti S, Comina C, Sambuelli L, Callerio A, Caleffi A (2010) The role of surface waves in prediction of ground vibrations from blasting. In 9th international symposium on rock fragmentation by blasting vibration from blasting, 57–65.

  33. Hu Z (2011) Engineering vibration analysis. Shanghai Jiao Tong University Press, Shanghai

    Google Scholar 

  34. Hustrulid W, Kuchta M, Martin R (2013) Open pit mine planning and design. CRC Press, Taylor & Francis Group, Boca Raton

    Google Scholar 

  35. ISRM (1992) Suggested method for blast vibration monitoring. Int J Rock Mech Min Sci Geomech Abst 29(2):145–146. https://doi.org/10.1016/0148-9062(92)92124-U

    Article  Google Scholar 

  36. Kalra M, Singh S (2015) A review of metaheuristic scheduling techniques in cloud computing. Egypt Informatics J 16(3):275–295. https://doi.org/10.1016/j.eij.2015.07.001

    Article  Google Scholar 

  37. Khan WA, Hamadneh NN, Tilahun SL, Ngnotchouye JMT (2016) A review and comparative study of firefly algorithm and its modified versions. Optim Algorithms Methods Appl Intechopen Press. https://doi.org/10.5772/62472

    Article  Google Scholar 

  38. Khandelwal M, Singh TN (2009) Prediction of blast-induced ground vibration using artificial neural network. Int J Rock Mech Min Sci 46:1214–1222. https://doi.org/10.1016/j.ijrmms.2009.03.004

    Article  Google Scholar 

  39. Khandelwal M, Singh TN (2006) Prediction of blast induced ground vibrations and frequency in opencast mine: a neural network approach. J Sound Vib 289:711–725. https://doi.org/10.1016/j.jsv.2005.02.044

    Article  Google Scholar 

  40. Kordos M, Arnaiz-González A, García-Osorio G (2019) Evolutionary prototype selection for multi-output regression. Neurocomputing 358:309–320. https://doi.org/10.1016/j.neucom.2019.05.055

    Article  Google Scholar 

  41. Leng Z, Fan Y, Gao Q, Hu Y (2020) Evaluation and optimization of blasting approaches to reducing oversize boulders and toes in open-pit mine. Int J Min Sci Technol 30(3):373–380. https://doi.org/10.1016/j.ijmst.2020.03.010

    Article  Google Scholar 

  42. Li H, Li X, Li J, Xia X, Wang X (2016) Application of coupled analysis methods for prediction of blast-induced dominant vibration frequency. Earthq Eng Eng Vib 15(1):153–162. https://doi.org/10.1007/s11803-016-0312-6

    Article  Google Scholar 

  43. Liu B, Chen X (2015) Uncertain multiobjective programming and uncertain goal programming. J Uncertain Anal Appl 3:10. https://doi.org/10.1186/s40467-015-0036-6

    Article  Google Scholar 

  44. Liu C, Gao F, Jin N (2014) Design and simulation of a modified firefly algorithm. In: Proceedings of seventh international joint conference on computational sciences and optimization, IEEE, Beijing, China, 21-25. https://doi.org/10.1109/CSO.2014.13

  45. Mauder T, Sandera C, Stetina J, Seda M (2011) Optimization of the quality of continuously cast steel slabs using the firefly algorithm. Mater Technol 45(4):347–350

    Google Scholar 

  46. Miettinen K (1999) Nonlinear multiobjective optimization. Kluwer Academic Publishers, Springer, Boston. https://doi.org/10.1007/978-1-4615-5563-6

    Book  MATH  Google Scholar 

  47. Meyer-Baese A, Schmid V, (2014) Foundations of neural networks. Pattern Recognition and Signal Analysis in Medical Imaging (2nd Eds), 197–243. https://doi.org/10.1016/B978-0-12-409545-8.00007-8

  48. Oliveira PM, Pires EJS, Boaventura-Cunha J, Pinho TM (2020) Review of nature and biologically inspired metaheuristics for greenhouse environment control. Trans Inst Meas Control 42(12):2338–2358. https://doi.org/10.1177/0142331220909010

    Article  Google Scholar 

  49. Pierce WE, Crum SV, Siskind DE (1996) Assessment of low-frequency blast vibrations and potential impacts on structures. US Department of the Interior, Bureau of Mines, Twin Cities Research Center, Interagency Agreement EF68-IA 92–12180.

  50. Rezaeineshat A, Monjezi M, Mehrdanesh A, Khandelwal M (2020) Optimization of blasting design in open pit limestone mines with the aim of reducing ground vibration using robust techniques. Geomech Geophys Geo-Energ Geo-Resour 6:40. https://doi.org/10.1007/s40948-020-00164-y

    Article  Google Scholar 

  51. Savage JC (1966) Thermoelastic attenuation of elastic waves by cracks. J Geophys Res 71(16):3929–3938. https://doi.org/10.1029/JZ071i016p03929

    Article  Google Scholar 

  52. Shi Y, Eberhart R (1998) A modified particle swarm optimizer. IEEE, International conference on evolutionary computation proceedings, IEEE world congress on computational intelligence (Cat. No. 98TH8360), 69–73. https://doi.org/10.1109/ICEC.1998.699146

  53. Singh PK, Roy MP (2010) Damage to surface structures due to blast vibration. Int J Rock Mech Min Sci 47(6):949–961. https://doi.org/10.1016/j.ijrmms.2010.06.010

    Article  Google Scholar 

  54. Stojanovic V, Nedic N, Prsic DDL, Djordjevic V (2016) Application of cuckoo search algorithm to constrained control problem of a parallel robot platform. Int J Adv Manuf Technol 87:2497–2507. https://doi.org/10.1007/s00170-016-8627-z

    Article  Google Scholar 

  55. Stehman S (1997) Selecting and interpreting measures of thematic classification accuracy. Remote Sens Environ 62(1):77–89. https://doi.org/10.1016/S0034-4257(97)00083-7

    Article  Google Scholar 

  56. Wei T, Li X, Stojanovic V (2021) Input-to-state stability of impulsive reaction–diffusion neural networks with infinite distributed delays. Nonlinear Dyn 103:1733–1755. https://doi.org/10.1007/s11071-021-06208-6

    Article  Google Scholar 

  57. Willmott CJ (1981) On the validation of models. Phys Geogr 2:184–194. https://doi.org/10.1080/02723646.1981.10642213

    Article  Google Scholar 

  58. Willmot CJ, Robeson SM, Matsuura K (2011) A refined index of model performance. Int J Climatol 32(13):2088–2094. https://doi.org/10.1002/joc.2419

    Article  Google Scholar 

  59. Wong WK, Ming CI (2019) A review on metaheuristic algorithms: recent trends, benchmarking and applications. IEEE, In proc. 7th ICSCC. https://doi.org/10.1109/ICSCC.2019.8843624

  60. Wu S, Chow TWS (2004) Induction machine fault detection using SOM-based RBF neural networks. IEEE Trans Ind Electron 51(1):183–194. https://doi.org/10.1109/TIE.2003.821897

    Article  Google Scholar 

  61. Wu J, Wang YG, Burrage K, Tian YC, Lawson B, Ding Z (2020) An improved firefly algorithm for global continuous optimization problems. Expert Syst Appl 149:113340. https://doi.org/10.1016/j.eswa.2020.113340

    Article  Google Scholar 

  62. Xu S, Li Y, Liu J, Zhang F (2020) Optimization of blasting parameters for an underground mine through prediction of blasting vibration. J Vib Control 25(9):1585–1595. https://doi.org/10.1177/1077546319829938

    Article  MathSciNet  Google Scholar 

  63. Yao K, Gao J (2016) Law of large numbers for uncertain random variables. IEEE Trans Fuzzy Syst 24(3):615–621. https://doi.org/10.1109/TFUZZ.2015.2466080

    Article  Google Scholar 

  64. Yang JH, Lu WB, Jiang QH, Yao C, Zhou CB (2016) Frequency comparison of blast-induced vibration per delay for the full-face millisecond delay blasting in underground opening excavation. Tunn Undergr Space Technol 51:189–201. https://doi.org/10.1016/j.tust.2015.10.036

    Article  Google Scholar 

  65. Yang XS (2008) Nature-inspired metaheuristic algorithms. Luniver Press

  66. Yang XS (2011) Metaheuristic optimization: algorithm analysis and open problems. In: Pardalos PM, Rebennack S (eds), Experimental algorithms, SEA 2011, Lecture notes in computer science, vol 6630, Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20662-7_2

  67. Zhang M, Zhou Z (2014) A review on multi-label learning algorithms. IEEE Trans Knowl Data Eng 26(8):1819–1837. https://doi.org/10.1109/TKDE.2013.39

    Article  Google Scholar 

  68. Zhou JR, Lu WB, Zhong DW, Leng ZD, Wu L, Yan P (2019) Prediction of frequency-dependent attenuation of blast-induced vibration in underground excavation. Eur J Environ Civ Eng. https://doi.org/10.1080/19648189.2019.1620134

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Abbaszadeh Shahri.

Ethics declarations

Conflict of interest

The authors declare that no conflict of interest exists.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbaszadeh Shahri, A., Khorsand Zak, M. & Abbaszadeh Shahri, H. A modified firefly algorithm applying on multi-objective radial-based function for blasting. Neural Comput & Applic 34, 2455–2471 (2022). https://doi.org/10.1007/s00521-021-06544-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-021-06544-z

Keywords

Navigation