Skip to main content

Advertisement

Log in

Enhanced classification of remotely sensed hyperspectral images through efficient band selection using autoencoders and genetic algorithm

  • S.I. : NCACVIP
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Hyperspectral images (HSIs) contain significant number of contiguous dense spectral bands which often have large redundancy and high correlation that subsequently results into “curse of dimensionality” in HSI analysis. Therefore, efficient band selection techniques are crucial for dimensionality reduction of HSIs without any significant loss of spectral information contained in it. In this paper, deep learning autoencoders and genetic algorithm (GA) are used for efficient selection of the most revealing bands from a remotely sensed HSI. The proposed method formulates the HSI band selection process as a GA-based evolutionary optimization that minimizes the reconstruction error of an autoencoder which uses a few informative bands for HSI reconstruction. The proposed approach starts with spectral segmentation of the bands in an HSI into a number of spectral regions, and then, different autoencoders are trained on each segment with the original input band vectors contained in the segmented region. Finally, GA-based search heuristics is applied on each region in order to find out sparse sub-combination of spectral bands in such a way that the trained autoencoders would reconstruct the original segmented spectral vectors from the resulting band sub-combinations with least reconstruction errors. The final band selection is carried out by aggregating all the band sub-combinations returned from the segmented regions. Finally, the effectiveness of the proposed method is verified through selected bands validation by a support vector machine classifier. Experimental results on three publicly available HSI datasets depict the consistently superior effectiveness of the proposed band selection method over other state-of-the-art methods in land cover classification of remotely sensed HSIs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. http://www.ehu.es/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes.

References

  1. Allwein EL, Schapire RE, Singer Y (2000) Reducing multiclass to binary: a unifying approach for margin classifiers. J Mach Learn Res 1:113–141

    MathSciNet  MATH  Google Scholar 

  2. Bajcsy P, Groves P (2004) Methodology for hyperspectral band selection. Photogramm Eng Remote Sens 70(7):793–802

    Article  Google Scholar 

  3. Bhattacharya S, Das S, Routray A (2018) Graph manifold clustering based band selection for hyperspectral face recognition. In: 2018 26th European signal processing conference (EUSIPCO). IEEE, pp 1990–1994

  4. Borengasser M, Hungate WS, Watkins R (2007) Hyperspectral remote sensing: principles and applications. In: Remote sensing applications series. CRC Press

  5. Burges CJ (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 2:121–167

    Article  Google Scholar 

  6. Cai Y, Zhang Z, Liu X, Cai Z (2020) Efficient graph convolutional self-representation for band selection of hyperspectral image. IEEE J Sel Top Appl Earth Obs Remote Sens 13:4869–4880

    Article  Google Scholar 

  7. Cao X, Wei C, Han J, Jiao L (2017) Hyperspectral band selection using improved classification map. IEEE Geosci Remote Sens Lett 14(11):2147–2151

    Article  Google Scholar 

  8. Cao X, Wu B, Tao D, Jiao L (2016) Automatic band selection using spatial-structure information and classifier-based clustering. IEEE J Sel Top Appl Earth Obs Remote Sens 9(9):4352–4360

    Article  Google Scholar 

  9. Cariou C, Chehdi K, Le Moan S (2011) BandClust: an unsupervised band reduction method for hyperspectral remote sensing. IEEE Geosci Remote Sens Lett 8(3):565–569

    Article  Google Scholar 

  10. Cervantes J, Garcia-Lamont F, Rodríguez-Mazahua L, Lopez A (2020) A comprehensive survey on support vector machine classification: applications, challenges and trends. Neurocomputing 408:189–215

    Article  Google Scholar 

  11. Chang CI, Liu KH (2014) Progressive band selection of spectral unmixing for hyperspectral imagery. IEEE Trans Geosci Remote Sens 52(4):2002–2017

    Article  Google Scholar 

  12. Chang Chein-I, Qian Du, Sun Tzu-Lung, Althouse M (1999) A joint band prioritization and band-decorrelation approach to band selection for hyperspectral image classification. IEEE Trans Geosci Remote Sens 37(6):2631–2641

    Article  Google Scholar 

  13. Chang CI, Wang S (2006) Constrained band selection for hyperspectral imagery. IEEE Trans Geosci Remote Sens 44(6):1575–1585

    Article  Google Scholar 

  14. Chen Y, Lin Z, Zhao X, Wang G, Gu Y (2014) Deep learning-based classification of hyperspectral data. IEEE J Sel Top Appl Earth Obs Remote Sens 7(6):2094–2107

    Article  Google Scholar 

  15. Chih-Wei Hsu, Chih-Jen Lin (2002) A comparison of methods for multiclass support vector machines. IEEE Trans Neural Netw 13(2):415–425

    Article  Google Scholar 

  16. Chouhan SS, Kaul A, Singh UP (2018) Soft computing approaches for image segmentation: a survey. Multimed Tools Appl 77(21):28483–28537

    Article  Google Scholar 

  17. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297

    Article  MATH  Google Scholar 

  18. Dopido I, Villa A, Plaza A, Gamba P (2012) A quantitative and comparative assessment of unmixing-based feature extraction techniques for hyperspectral image classification. IEEE J Sel Top Appl Earth Obs Remote Sens 5(2):421–435

    Article  Google Scholar 

  19. Dou Z, Gao K, Zhang X, Wang H, Han L (2020) Band selection of hyperspectral images using attention-based autoencoders. IEEE Geosci Remote Sens Lett 18:147–151

    Article  Google Scholar 

  20. Feng S, Itoh Y, Parente M, Duarte MF (2017) Hyperspectral band selection from statistical wavelet models. IEEE Trans Geosci Remote Sens 55(4):2111–2123

    Article  Google Scholar 

  21. Foody G, Mathur A (2004) A relative evaluation of multiclass image classification by support vector machines. IEEE Trans Geosci Remote Sens 42(6):1335–1343

    Article  Google Scholar 

  22. Fussell J, Rundquist D, Harrington JA (1986) On defining remote sensing. Photogramm Eng Remote Sens 52(9):1507–1511

    Google Scholar 

  23. Ghamisi P, Benediktsson JA (2015) Feature selection based on hybridization of genetic algorithm and particle swarm optimization. IEEE Geosci Remote Sens Lett 12(2):309–313

    Article  Google Scholar 

  24. Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press

  25. Guo B, Gunn S, Damper R, Nelson J (2006) Band selection for hyperspectral image classification using mutual information. IEEE Geosci Remote Sens Lett 3(4):522–526

    Article  Google Scholar 

  26. Harsanyi J, Chang CI (1994) Hyperspectral image classification and dimensionality reduction: an orthogonal subspace projection approach. IEEE Trans Geosci Remote Sens 32(4):779–785

    Article  Google Scholar 

  27. Hedjam R, Cheriet M (2012) Hyperspectral band selection based on graph clustering. In: 2012 11th International conference on information science, signal processing and their applications (ISSPA). IEEE, pp 813–817

  28. Jia S, Tang G, Zhu J, Li Q (2016) A novel ranking-based clustering approach for hyperspectral band selection. IEEE Trans Geosci Remote Sens 54(1):88–102

    Article  Google Scholar 

  29. Kandavanam G, Botvich D, Balasubramaniam S, Jennings B (2010) A hybrid genetic algorithm/variable neighborhood search approach to maximizing residual bandwidth of links for route planning. Artif Evol. Springer, Berlin, pp 49–60

    Google Scholar 

  30. Katoch S, Chauhan SS, Kumar V (2021) A review on genetic algorithm: past, present, and future. Multimed Tools Appl 80(5):8091–8126

    Article  Google Scholar 

  31. Kaur M, Kumar V (2018) Parallel non-dominated sorting genetic algorithm-II-based image encryption technique. Imaging Sci J 66(8):453–462

    Article  Google Scholar 

  32. Kavitha AR, Chellamuthu C (2016) Brain tumour segmentation from MRI image using genetic algorithm with fuzzy initialisation and seeded modified region growing (GFSMRG) method. Imaging Sci J 64(5):285–297

    Article  Google Scholar 

  33. Kumar B, Dikshit O, Gupta A, Singh MK (2020) Feature extraction for hyperspectral image classification: a review. Int J Remote Sens 41(16):6248–6287

    Article  Google Scholar 

  34. Lamine S, Pandey MK, Petropoulos GP, GP, Brewer PA, Srivastava PK, Manevski K, Toulios L, Bachari N, Macklin MG (2020) Spectroradiometry as a tool for monitoring soil contamination by heavy metals in a floodplain site. In: Hyperspectral Remote Sensing. Elsevier, pp 249–268

  35. Landgrebe D (2002) Hyperspectral image data analysis. IEEE Signal Process Mag 19(1):17–28

    Article  Google Scholar 

  36. Lee C (2018) A review of applications of genetic algorithms in operations management. Eng Appl Artif Intell 76:1–12

    Article  Google Scholar 

  37. Liu Y, Xie H, Wang L, Tan K (2016) Hyperspectral band selection based on a variable precision neighborhood rough set. Appl Opt 55(3):462

    Article  Google Scholar 

  38. MartÍnez-UsÓMartinez-Uso A, Pla F, Sotoca JM, GarcÍa-Sevilla P (2007) Clustering-based hyperspectral band selection using information measures. IEEE Trans Geosci Remote Sens 45(12):4158–4171

    Article  Google Scholar 

  39. Michalewicz Z (1996) Genetic algorithms + data structures = evolution programs. Springer, Berlin. https://doi.org/10.1007/978-3-662-03315-9

    Book  MATH  Google Scholar 

  40. Michalewicz Z, Schoenauer M (1996) Evolutionary algorithms for constrained parameter optimization problems. Evol Comput 4(1):1–32

    Article  Google Scholar 

  41. Mitchell M (1996) An introduction to genetic algorithms. MIT Press, Cambridge

    MATH  Google Scholar 

  42. Nasrabadi NM (2014) Hyperspectral target detection?: An overview of current and future challenges. IEEE Signal Process Mag 31(1):34–44

    Article  Google Scholar 

  43. Peerlinck A, Sheppard J, Pastorino J, Maxwell B (2019) Optimal design of experiments for precision agriculture using a genetic algorithm. In: 2019 IEEE congress on evolutionary computation (CEC). IEEE, pp 1838–1845

  44. Sermpinis G, Stasinakis C, Theofilatos K, Karathanasopoulos A (2015) Modeling, forecasting and trading the EUR exchange rates with hybrid rolling genetic algorithms—support vector regression forecast combinations. Eur J Oper Res 247(3):831–846

    Article  MathSciNet  MATH  Google Scholar 

  45. Shao Y, Lunetta RS (2012) Comparison of support vector machine, neural network, and CART algorithms for the land-cover classification using limited training data points. ISPRS J Photogramm Remote Sens 70:78–87

    Article  Google Scholar 

  46. Shuaibu M, Lee WS, Schueller J, Gader P, Hong YK, Kim S (2018) Unsupervised hyperspectral band selection for apple Marssonina blotch detection. Comput Electron Agric 148:45–53

    Article  Google Scholar 

  47. Sivanandam SN, Deepa SN (2008) Introduction to genetic algorithms. Springer, Berlin

    MATH  Google Scholar 

  48. Somers B, Asner GP (2013) Multi-temporal hyperspectral mixture analysis and feature selection for invasive species mapping in rainforests. Remote Sens Environ 136:14–27

    Article  Google Scholar 

  49. Su H, Yang H, Du Q, Sheng Y (2011) Semisupervised band clustering for dimensionality reduction of hyperspectral imagery. IEEE Geosci Remote Sens Lett 8(6):1135–1139

    Article  Google Scholar 

  50. Su H, Yong B, Du Q (2016) Hyperspectral band selection using improved firefly algorithm. IEEE Geosci Remote Sens Lett 13(1):68–72

    Article  Google Scholar 

  51. Sun K, Geng X, Chen J, Ji L, Tang H, Zhao Y, Xu M (2016) A robust and efficient band selection method using graph representation for hyperspectral imagery. Int J Remote Sens 37(20):4874–4889

    Article  Google Scholar 

  52. Sun W, Du Q (2018) Graph-regularized fast and robust principal component analysis for hyperspectral band selection. IEEE Trans Geosci Remote Sens 56(6):3185–3195

    Article  Google Scholar 

  53. Sun W, Du Q (2019) Hyperspectral band selection: a review. IEEE Geosci Remote Sens Mag 7(2):118–139

    Article  Google Scholar 

  54. Tong Q, Xue Y, Zhang L (2014) Progress in hyperspectral remote sensing science and technology in China over the past three decades. IEEE J Sel Top Appl Earth Obs Remote Sens 7(1):70–91

    Article  Google Scholar 

  55. Vapnik VN (2000) The nature of statistical learning theory. Springer, New York

    Book  MATH  Google Scholar 

  56. Varade D, Maurya AK, Dikshit O (2019) Unsupervised band selection of hyperspectral data based on mutual information derived from weighted cluster entropy for snow classification. Geocarto Int. https://doi.org/10.1080/10106049.2019.1665717

  57. Whitley D (1994) A genetic algorithm tutorial. Stat Comput 4(2):65–85

  58. Xie F, Li F, Lei C, Ke L (2018) Representative band selection for hyperspectral image classification. ISPRS Int J Geo-Inf 7(9):338

    Article  Google Scholar 

  59. Yang H, Du Q, Chen G (2012) Particle swarm optimization-based hyperspectral dimensionality reduction for urban land cover classification. IEEE J Sel Top Appl Earth Obs Remote Sens 5(2):544–554

    Article  Google Scholar 

  60. Yang R, Su L, Zhao X, Wan H, Sun J (2017) Representative band selection for hyperspectral image classification. J Vis Commun Image Represent 48:396–403

    Article  Google Scholar 

  61. Yi Kim E, Jung K (2005) Genetic algorithms for video segmentation. Pattern Recognit 38(1):59–73

    Article  Google Scholar 

  62. Yuan Y, Zhu G, Wang Q (2015) Hyperspectral band selection by multitask sparsity pursuit. IEEE Trans Geosci Remote Sens 53(2):631–644

    Article  Google Scholar 

  63. Zeng M, Cai Y, Cai Z, Liu X, Hu P, Ku J (2019) Unsupervised hyperspectral image band selection based on deep subspace clustering. IEEE Geosci Remote Sens Lett 16(12):1889–1893

    Article  Google Scholar 

  64. Zhang M, Ma J, Gong M (2017) Unsupervised hyperspectral band selection by fuzzy clustering with particle swarm optimization. IEEE Geosci Remote Sens Lett 14(5):773–777

    Article  Google Scholar 

Download references

Acknowledgements

First author is grateful to the University Grants Commission (UGC), New Delhi, India, for the research fellowship provided through UGC-JRF Scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pangambam Sendash Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P.S., Karthikeyan, S. Enhanced classification of remotely sensed hyperspectral images through efficient band selection using autoencoders and genetic algorithm. Neural Comput & Applic 34, 21539–21550 (2022). https://doi.org/10.1007/s00521-021-06121-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-021-06121-4

Keywords

Navigation