Skip to main content

Advertisement

Log in

Adaptive virtual-inertia control and chicken swarm optimizer for frequency stability in power-grids penetrated by renewable energy sources

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this article, a control scheme based on chicken swarm optimizer (CSO) in cooperation with adaptive virtual-inertia control (AVIC) is investigated. The proposed control scheme aims at improving the frequency stability of an interconnected power system which is penetrated by renewable energy sources. The CSO is applied to produce the best values of the gains of the adapted standard proportional-integral-derivative (PID) controllers and required parameters of AVICs. Various scenarios are addressed in this study such as applications of sudden step load disturbances and severe variations in the inertia of the system. In addition, realistic conditions such as uncertainties of tidal power source and random load disturbances are demonstrated. Compulsory assessments with subsequent discussions to evaluate the results of the CSO are made. The proposed CSO–AVIC based control method is verified by comparisons with well-matured interesting algorithms such as differential evolution and particle swarm optimizers. Various quality specifications of the dynamic responses and the demonstrated results indicate clearly the viability of the proposed CSO–AVIC based on control scheme. It can be emphasized that the utilization of AVIC along with PID controllers are significantly improved the system dynamic performances and their dynamic response specifications meet the terms of standard acceptable criteria’s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Othman AM, El-Fergany AA (2018) Design of robust model predictive controllers for frequency and voltage loops of interconnected power systems including wind farm and energy storage system. IET Gener Transm Distrib 12(19):4276–4283. https://doi.org/10.1049/iet-gtd.2018.5568

    Article  Google Scholar 

  2. Hasanien HM, El-Fergany AA (2017) Symbiotic organisms search algorithm for automatic generation control of interconnected power systems including wind farms. IET Gener Transm Distrib 11(7):1692–1700. https://doi.org/10.1049/iet-gtd.2016.1245

    Article  Google Scholar 

  3. El-Hameed M, Elkholy M, El-fergany A (2019) Efficient frequency regulation in highly penetrated power systems by renewable energy sources using stochastic fractal optimiser. IET Renew Power Gener 13(12):2174–2183. https://doi.org/10.1049/iet-rpg.2019.0186

    Article  Google Scholar 

  4. Liu J, Miura Y, Ise T (2016) Comparison of dynamic characteristics between virtual synchronous generator and droop control in inverter-based distributed generators. IEEE Trans Power Electron 31(5):3600–3611. https://doi.org/10.1109/TPEL.2015.2465852

    Article  Google Scholar 

  5. Pradhan C, Chandrashekhar CN, Samanta AK (2018) Adaptive virtual inertia-based frequency regulation in wind power systems. Renew Energy 115:558–574. https://doi.org/10.1016/j.renene.2017.08.065

    Article  Google Scholar 

  6. Hajiakbari M, Golshan FM (2018) Determining optimal virtual inertia and frequency control parameters to preserve the frequency stability in islanded microgrids with high penetration of renewable. Electr Power Syst Res 154:13–22. https://doi.org/10.1016/j.epsr.2017.08.007

    Article  Google Scholar 

  7. Chen C, Zhang K, Geng J, Yuan K, Yang Z, Li L (2017) Multiobjective-based optimal allocation scheme for load frequency control. Int Trans Electr Energy Syst 27(7):e2334. https://doi.org/10.1002/etep.2334

    Article  Google Scholar 

  8. Mohamed MA, Diab AZ, Rezk H, Jin T (2019) A novel adaptive model predictive controller for load frequency control of power systems integrated with DFIG wind turbines. Neural Comput Appl. https://doi.org/10.1007/s00521-019-04205-w

    Article  Google Scholar 

  9. Wu W, Chen Y, Luo A, Zhou L, Zhou X, Yang L, Dong Y, Guerrero JM (2017) A virtual inertia control strategy for DC microgrids analogized with virtual synchronous machines. IEEE Trans Ind Electron 64(7):6005–6016. https://doi.org/10.1109/TIE.2016.2645898

    Article  Google Scholar 

  10. Li Y, Xu Z, Wong KP (2017) Advanced control strategies of PMSG-based wind turbines for system inertia support. IEEE Trans Power Syst 32(4):3027–3037. https://doi.org/10.1109/TPWRS.2016.2616171

    Article  Google Scholar 

  11. Yi W, Jianhui M, Xiangyu Z, Lie X (2015) Control of PMSG-based wind turbines for system inertial response and power oscillation damping. IEEE Trans Sustain Energy 6(2):565–574. https://doi.org/10.1109/TSTE.2015.2394363

    Article  Google Scholar 

  12. Ye H, Pei W, Qi Z (2016) Analytical modeling of inertial and droop responses from a wind farm for short-term frequency regulation in power systems. IEEE Trans Power Syst 31(5):3414–3423. https://doi.org/10.1109/TPWRS.2015.2490342

    Article  Google Scholar 

  13. Solaiappan BS, Nagappan K (2017) AGC for multisource deregulated power system using ANFIS controller. Int Trans Electr Energy Syst 27(3):e2270. https://doi.org/10.1002/etep.2270

    Article  Google Scholar 

  14. Moafi M, Marzband M, Savaghebi M, Guerrer M (2016) Energy management system based on fuzzy fractional order PID controller for transient stability improvement in microgrids with energy storage. Int Trans Electr Energy Syst 26:2087–2106. https://doi.org/10.1002/etep.2186

    Article  Google Scholar 

  15. Dahiya P, Sharma V, Naresh R (2019) Optimal sliding mode control for frequency regulation in deregulated power systems with DFIG-based wind turbine and TCSC–SMES. Neural Comput Appl 31(7):3039–3056. https://doi.org/10.1007/s00521-017-3250-y

    Article  Google Scholar 

  16. Vyver JV, Kooning JD, Meersman B, Vandevelde L, Vandoorn TL (2016) Droop control as an alternative inertial response strategy for the synthetic inertia on wind turbines. IEEE Trans Power Syst 31(2):1129–1138. https://doi.org/10.1109/TPWRS.2015.2417758

    Article  Google Scholar 

  17. Yuan XB, Li YD (2014) Control of variable pitch and variable speed direct-drive wind turbines in weak grid systems with active power balance. IET Renew Power Gener 8(2):119–131. https://doi.org/10.1049/iet-rpg.2012.0212

    Article  Google Scholar 

  18. Kerdphol T, Rahman FS, Mitani Y, Watanabe M, Kufeoglu S (2018) Robust virtual inertia control of an islanded microgrid considering high penetration of renewable energy. IEEE Access 6:625–636. https://doi.org/10.1109/ACCESS.2017.2773486

    Article  Google Scholar 

  19. Kerdphol T, Watanabe M, Hongesobut K, Mitani Y (2019) Self-adaptive virtual inertia control-based fuzzy logic to improve frequency stability of microgrid with high renewable penetration. IEEE Access 7:76071–76083. https://doi.org/10.1109/ACCESS.2019.2920886

    Article  Google Scholar 

  20. Li J, Wen B, Wang H (2019) Adaptive virtual inertia control strategy of VSG for micro-grid based on improved bang-bang control strategy. IEEE Access 7:39509–39514. https://doi.org/10.1109/ACCESS.2019.2904943

    Article  Google Scholar 

  21. Meng J, Wang Y, Fu C, Wang H (2017) Adaptive virtual inertia control of distributed generator for dynamic frequency support in microgrid. IEEE Energy Convers Congress Expos. https://doi.org/10.1109/ECCE.2016.7854825

    Article  Google Scholar 

  22. Wang S, Hu JB, Yuan XM, Sun L (2015) On inertial dynamics of virtual-synchronous-controlled DFIG-based wind turbines. IEEE Trans Energy Convers 30(4):1691–1702. https://doi.org/10.1109/TEC.2015.2460262

    Article  Google Scholar 

  23. Le-Ren CC, Wei-Ting L, Yao-Ching Y (2011) Enhancing frequency response control by DFIGs in the high wind penetrated power systems. IEEE Trans Power Syst 26(2):710–718. https://doi.org/10.1109/TPWRS.2010.2052402

    Article  Google Scholar 

  24. Arani MF, El-Saadany EF (2013) Implementing virtual inertia in DFIG-based wind power generation. IEEE Trans Power Syst 28(2):1373–1384. https://doi.org/10.1109/TPWRS.2012.2207972

    Article  Google Scholar 

  25. Singh A, Sharma V (2019) Salp swarm algorithm-based model predictive controller for frequency regulation of solar integrated power system. Neural Comput Appl. https://doi.org/10.1007/s00521-019-04422-3

    Article  Google Scholar 

  26. Khadanga RK, Kumar A, Panda A (2019) Novel modified whale optimization algorithm for load frequency controller design of a two-area power system composing of PV grid and thermal generator. Neural Comput Appl. https://doi.org/10.1007/s00521-019-04321-7

    Article  Google Scholar 

  27. Dreidy M, Mokhlis H, Mekhilef S (2017) Inertia response and frequency control techniques for renewable energy sources: a review. Renew Sustain Energy Rev 69:144–155. https://doi.org/10.1016/j.rser.2016.11.170

    Article  Google Scholar 

  28. Meng X, Liu Y, Gao X, Zhang H (2014) A new bio-inspired algorithm: chicken swarm optimization. In: Tan Y, Shi Y, CoelloCoello CA (eds) Advances in swarm intelligence. ICSI 2014. Lecture notes in computer science. Springer, Cham. https://doi.org/10.1007/978-3-319-11857-4_10

    Chapter  Google Scholar 

  29. Wu Z, Yu D, Kang X (2018) Application of improved chicken swarm optimization for MPPT in photovoltaic system. Optim Control Appl Meth 39(2):1029–1042. https://doi.org/10.1002/oca.2394

    Article  MathSciNet  MATH  Google Scholar 

  30. Sivasakthi S, Muralikrishnan N (2016) Chicken swarm optimization for economic dispatch with disjoint prohibited zones considering network losses. J Appl Sc Eng Methodolog 2(2):255–259

    Google Scholar 

  31. Awais M, Abadeen ZU, Bilal TZ, Faiz M, Javaid N (2017) Home energy management using enhanced differential evolution and chicken swarm optimization techniques. In: Barolli L, Woungang I, Hussain OK (eds) Advances in Intelligent Networking and Collaborative Systems INCoS 2017 Lecture Notes on Data Engineering and Communications Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-65636-6_42

    Chapter  Google Scholar 

  32. The MathWorks-MATLAB 2018a (2018) https://www.mathworks.com.Accessed on Apr 2018

  33. Mahto T, Mukherjee V (2015) Quasi-oppositional harmony search algorithm and fuzzy logic controller for load frequency stabilisation of an isolated hybrid power system. IET Gener Transm Distrib 9(5):427–444. https://doi.org/10.1049/iet-gtd.2014.0502

    Article  Google Scholar 

  34. Tan W (2010) Unified tuning of PID load frequency controller for power systems via IMC. IEEE Trans Power Syst 25(1):341–350. https://doi.org/10.1109/TPWRS.2009.2036463

    Article  Google Scholar 

  35. El-Fergany A (2013) Accelerated particle swarm optimization-based approach to the optimal design of substation grounding grid. Przeglad Elektrotechniczny (Electr Rev) 89(7):30–34

    Google Scholar 

  36. Storn R, Price K (1997) Differential evolution - a simple and efficient heuristic for global optimization over continuous space. J Global Optim 11(4):341–359. https://doi.org/10.1023/A:1008202821328

    Article  MathSciNet  MATH  Google Scholar 

  37. El-Fergany AA, Hasanien HM (2015) Single and multi-objective optimal power flow using grey wolf optimizer and differential evolution algorithms. Electr Power Compo Syst 43(13):1548–1559. https://doi.org/10.1080/15325008.2015.1041625

    Article  Google Scholar 

  38. El-Fergany AA (2013) Optimal capacitor allocations using evolutionary algorithms. IET Gener Transm Distrib 7(6):593–601. https://doi.org/10.1049/iet-gtd.2012.0661

    Article  Google Scholar 

  39. El-Fergany AA, El-Hameed MA (2017) Efficient frequency controllers for autonomous two-area hybrid microgrid system using social-spider optimizer. IET Gener Transm Distrib 11(3):637–648. https://doi.org/10.1049/iet-gtd.2016.0455

    Article  Google Scholar 

  40. El-Hameed MA, El-Fergany AA (2016) Water cycle algorithm-based load frequency controller for interconnected power systems comprising non-linearity. IET Gener Transm Distrib 10(15):3950–3961. https://doi.org/10.1049/iet-gtd.2016.0699

    Article  Google Scholar 

  41. European Network of Transmission System Operators for Electricity (ENTSOE) (2018). Available @ https://www.entsoe.eu/. Accessed on Apr 2019

  42. Hasanien HM, El-Fergany AA (2019) Salp swarm algorithm-based optimal load frequency control of hybrid renewable power systems with communication delay and excitation cross-coupling effect. Electr Power Syst Res 176:05938. https://doi.org/10.1016/j.epsr.2019.105938

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Attia A. El-Fergany.

Ethics declarations

Conflict of interest

No potential conflict of interest should be reported.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Othman, A.M., El-Fergany, A.A. Adaptive virtual-inertia control and chicken swarm optimizer for frequency stability in power-grids penetrated by renewable energy sources. Neural Comput & Applic 33, 2905–2918 (2021). https://doi.org/10.1007/s00521-020-05054-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-020-05054-8

Keywords

Navigation