Skip to main content

Advertisement

Log in

DC–DC converters design using a type-2 wavelet fuzzy cerebellar model articulation controller

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Recently, boost and buck converters are widely applied in many applications, especially in recycled energy industry. The efficiency of DC–DC converter, which can increase or decrease the input voltage according to the driver output voltage, can effectively affect the total efficiency of the systems. In this paper, a sliding mode interval type-2 fuzzy wavelet cerebellar model articulation controller (T2WFCMAC)-based control system is designed for the DC–DC converters. The proposed control system contains a main controller and a robust compensation controller. The main controller is the T2WFCMAC which is used to mimic an ideal controller, and the robust compensation is designed to compensate for the approximation error between the main controller and the ideal controller. The sliding hyperplane is applied to improve the robustness of the control system. All the adaptive laws for adjusting the parameters of T2WFCMAC are obtained using the gradient descent method. The stability of control system is guaranteed in the sense of Lyapunov function. Finally, numerical experimental results of boost and buck converters are presented to illustrate the effectiveness of the proposed approach under the change in the input voltage and the load resistance variations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Lin P-Z, Lin C-M, Hsu C-F, Lee T-T (2005) Type-2 fuzzy controller design using a sliding-mode approach for application to DC–DC converters. IEE Proc Electr Power Appl 152(6):1482–1488

    Article  Google Scholar 

  2. Lee Y-J, Khaligh A, Emadi A (2009) A compensation technique for smooth transitions in a noninverting buck–boost converter. IEEE Trans Power Electron 24(4):1002–1015

    Article  Google Scholar 

  3. Wu T-F, Lai Y-S, Hung J-C, Chen Y-M (2008) Boost converter with coupled inductors and buck–boost type of active clamp. IEEE Trans Ind Electron 55(1):154–162

    Article  Google Scholar 

  4. Alonso JM, Viña J, Vaquero DG, Martínez G, Osorio R (2012) Analysis and design of the integrated double buck–boost converter as a high-power-factor driver for power-LED lamps. IEEE Trans Ind Electron 59(4):1689–1697

    Article  Google Scholar 

  5. Bharadwaj P, John V (2017) High performance buck–boost converter based PV characterisation set-up. In: Proceedings of ECCE, pp 4425–4432

  6. Vivek P, Ayshwarya R, Amali SJ, Sree AN (2016) A novel approach on MPPT algorithm for solar panel using buck boost converter. In: Proceedings of ICEETS, pp 396–399

  7. Deniz E (2017) ANN-based MPPT algorithm for solar PMSM drive system fed by direct-connected PV array. Neural Comput Appl 28(10):3061–3072

    Article  Google Scholar 

  8. Oshaba A, Ali E, Elazim SA (2017) PI controller design for MPPT of photovoltaic system supplying SRM via BAT search algorithm. Neural Comput Appl 28(4):651–667

    Article  Google Scholar 

  9. Wang F, Wu X, Lee FC, Wang Z, Kong P, Zhuo F (2014) Analysis of unified output MPPT control in subpanel PV converter system. IEEE Trans Power Electron 29(3):1275–1284

    Article  Google Scholar 

  10. Yu G, Chew KWR, Sun ZC, Tang H, Siek L (2015) A 400 nW single-inductor dual-input-tri-output DC–DC buck–boost converter with maximum power point tracking for indoor photovoltaic energy harvesting. IEEE J Solid State Circuits 50(11):2758–2772

    Article  Google Scholar 

  11. Sreekanth T, Lakshminarasamma N, Mishra MK (2017) A single-stage grid-connected high gain buck–boost inverter with maximum power point tracking. IEEE Trans Energy Convers 32(1):330–339

    Article  Google Scholar 

  12. Agostinelli M, Priewasser R, Marsili S, Huemer M (2011) Fixed-frequency pseudo sliding mode control for a buck–boost DC–DC converter in mobile applications: a comparison with a linear PID controller. In: Proceedings of ISCAS, pp 1604–1607

  13. Cheng K-H, Hsu C-F, Lin C-M, Lee T-T, Li C (2007) Fuzzy-neural sliding-mode control for DC–DC converters using asymmetric Gaussian membership functions. IEEE Trans Ind Electron 54(3):1528–1536

    Article  Google Scholar 

  14. Kumbhojkar A, Patel N, Kumbhojkar A (2014) A novel sliding mode control technique for DC to DC buck converter. In: Proceedings of ICCPCT, pp 881–886

  15. Cheng L, Acuna P, Aguilera RP, Ciobotaru M, Jiang J (2016) Model predictive control for DC–DC boost converters with constant switching frequency. In: Proceedings of SPEC, pp 1–6

  16. Albus JS (1975) A new approach to manipulator control: the cerebellar model articulation controller (CMAC). J Dyn Syst Meas Control 97(3):220–227

    Article  Google Scholar 

  17. Lin C-M, Lin M-H, Yeh R-G (2013) Synchronization of unified chaotic system via adaptive wavelet cerebellar model articulation controller. Neural Comput Appl 23(3–4):965–973

    Article  Google Scholar 

  18. Lin C-M, Chen T-Y (2009) Self-organizing CMAC control for a class of MIMO uncertain nonlinear systems. IEEE Trans Neural Netw 20(9):1377–1384

    Article  Google Scholar 

  19. Lin C-M, Le T-L (2017) WCMAC-based control system design for nonlinear systems using PSO. J Intell Fuzzy Syst 33(2):807–818

    Article  Google Scholar 

  20. Lin C-M, Yang M-S, Chao F, Hu X-M, Zhang J (2016) Adaptive filter design using type-2 fuzzy cerebellar model articulation controller. IEEE Trans Neural Netw Learn Syst 27(10):2084–2094

    Article  MathSciNet  Google Scholar 

  21. Lu H-C, Chuang C-Y (2011) Robust parametric CMAC with self-generating design for uncertain nonlinear systems. Neurocomputing 74(4):549–562

    Article  Google Scholar 

  22. Lin C-M, Li H-Y (2013) Intelligent hybrid control system design for antilock braking systems using self-organizing function-link fuzzy cerebellar model articulation controller. IEEE Trans Fuzzy Syst 21(6):1044–1055

    Article  Google Scholar 

  23. Wang J-G, Tai S-C, Lin C-J (2014) Medical diagnosis applications using a novel interactively recurrent self-evolving fuzzy CMAC model. In: Proceedings of IJCNN, pp 4092–4098

  24. Zadeh LA (1975) The concept of a linguistic variable and its application to approximate reasoning—I. Inf Sci 8(3):199–249

    Article  MathSciNet  Google Scholar 

  25. Liang Q, Mendel JM (2000) Interval type-2 fuzzy logic systems: theory and design. IEEE Trans Fuzzy Syst 8(5):535–550

    Article  Google Scholar 

  26. Wu D (2013) Two differences between interval type-2 and type-1 fuzzy logic controllers: adaptiveness and novelty. In: Sadeghian A, Mendel J, Tahayori H (eds) Advances in type-2 fuzzy sets and systems. Springer, New York, pp 33–48

    Chapter  Google Scholar 

  27. Wu Dongrui (2012) On the fundamental differences between interval type-2 and type-1 fuzzy logic controllers. IEEE Trans Fuzzy Syst 20(5):832–848

    Article  Google Scholar 

  28. Zhang Z (2018) Trapezoidal interval type-2 fuzzy aggregation operators and their application to multiple attribute group decision making. Neural Comput Appl 29(4):1039–1054

    Article  Google Scholar 

  29. Mohagheghi V, Mousavi SM, Vahdani B (2017) Analyzing project cash flow by a new interval type-2 fuzzy model with an application to construction industry. Neural Comput Appl 28(11):3393–3411

    Article  Google Scholar 

  30. Eyoh I, John R, De Maere G (2017) Interval type-2 intuitionistic fuzzy logic for regression problems. IEEE Trans Fuzzy Syst. https://doi.org/10.1109/TFUZZ.2017.2775599

    Article  Google Scholar 

  31. Hsu C-F, Lin C-M, Lee T-T (2006) Wavelet adaptive backstepping control for a class of nonlinear systems. IEEE Trans Neural Netw 17(5):1175–1183

    Article  Google Scholar 

  32. Mai T, Wang Y (2014) Adaptive force/motion control system based on recurrent fuzzy wavelet CMAC neural networks for condenser cleaning crawler-type mobile manipulator robot. IEEE Trans Control Syst Technol 22(5):1973–1982

    Article  Google Scholar 

  33. Wai R-J, Duan R-Y, Lee J-D, Chang H-H (2003) Wavelet neural network control for induction motor drive using sliding-mode design technique. IEEE Trans Ind Electron 50(4):733–748

    Article  Google Scholar 

  34. Yang J, Li S, Yu X (2013) Sliding-mode control for systems with mismatched uncertainties via a disturbance observer. IEEE Trans Ind Electron 60(1):160–169

    Article  Google Scholar 

  35. Yu X, Kaynak O (2009) Sliding-mode control with soft computing: a survey. IEEE Trans Ind Electron 56(9):3275–3285

    Article  Google Scholar 

  36. Yu X, Wang B, Li X (2012) Computer-controlled variable structure systems: the state-of-the-art. IEEE Trans Ind Inf 8(2):197–205

    Article  Google Scholar 

  37. Wang J, Gao Y, Qiu J, Ahn CK (2016) Sliding mode control for non-linear systems by Takagi–Sugeno fuzzy model and delta operator approaches. IET Control Theory Appl 11(8):1205–1213

    Article  MathSciNet  Google Scholar 

  38. Morkoç C, Önal Y, Kesler M (2014) DSP based embedded code generation for PMSM using sliding mode controller. In: Proceedings of PEMC, pp 472–476

  39. Yadegari H, Chao H, Yukai Z (2016) Finite time sliding mode controller for a rigid satellite in presence of actuator failure. In: Proceedings of ICISCE), pp 1327–1331

  40. Ding S, Li S (2017) Second-order sliding mode controller design subject to mismatched term. Automatica 77:388–392

    Article  MathSciNet  Google Scholar 

  41. Umamaheswari M, Uma G, Vijayalakshmi K (2011) Design and implementation of reduced-order sliding mode controller for higher-order power factor correction converters. IET Power Electron 4(9):984–992

    Article  Google Scholar 

  42. Cuk S, Middlebrook R (1983) Advances in switched-mode power conversion part I. IEEE Trans Ind Electron 30(1):10–19

    Article  Google Scholar 

  43. Krein PT, Bentsman J, Bass RM, Lesieutre BL (1990) On the use of averaging for the analysis of power electronic systems. IEEE Trans Power Electron 5(2):182–190

    Article  Google Scholar 

  44. Slotine J-JE, Li W (1991) Applied nonlinear control, vol 199. Prentice Hall, Englewood Cliffs

    MATH  Google Scholar 

  45. Lin C-M, Chen Y-M, Hsueh C-S (2014) A self-organizing interval type-2 fuzzy neural network for eadar emitter identification. Int J Fuzzy Syst 16(1):120–130

    Google Scholar 

Download references

Acknowledgements

The authors appreciate the financial support in part from the Nation Science Council of Republic of China under Grant NSC 101-2221-E-155-026-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih-Min Lin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, CM., La, VH. & Le, TL. DC–DC converters design using a type-2 wavelet fuzzy cerebellar model articulation controller. Neural Comput & Applic 32, 2217–2229 (2020). https://doi.org/10.1007/s00521-018-3755-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-018-3755-z

Keywords

Navigation