Skip to main content
Log in

Integrating mutation scheme into monarch butterfly algorithm for global numerical optimization

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Monarch butterfly optimization algorithm (MBO) has recently been proposed as a robust metaheuristic optimization algorithm for solving numerical global optimization problems. To enhance the performance of MBO algorithm, harmony search (HS) is introduced as a mutation operator during the adjusting operator of MBO. A novel hybrid metaheuristic optimization method, the so-called HMBO, is introduced to find the best solution for the global optimization problems. HMBO combines HS exploration with MBO exploitation, and therefore, it produces potential candidate solutions. The implementation process for enhancing MBO method is also presented. To evaluate the effectiveness of this improvement, fourteen standard benchmark functions are used. The mean and the best performance of these benchmark functions in 20, 50, and 100 dimensions demonstrated that HMBO often performs better than the original MBO and other population-based optimization algorithms such as ACO, BBO, DE, ES, GAPBIL, PSO and SGA. Moreover, the t-test result proved that the performance differences between the enhanced HMBO and the original MBO as well as the other optimization methods are statistically significant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Yang XS (2010) Nature-inspired metaheuristic algorithms. Luniver press, Frome

    Google Scholar 

  2. Michalewicz Z, Fogel DB (2013) How to solve it: modern heuristics. Springer, Berlin

    MATH  Google Scholar 

  3. Van Laarhoven PJ, Aarts EH (1987) Simulated annealing. Simulated annealing theory and applications. Springer, Netherlands, pp 7–15

    Chapter  MATH  Google Scholar 

  4. Wang G, Guo L, Wang H, Duan H, Liu L, Li J (2014) Incorporating mutation scheme into krill herd algorithm for global numerical optimization. Neural Comput Appl 24(3–4):853–871

    Article  Google Scholar 

  5. Gandomi AH, Yang XS, Talatahari S, Alavi AH (2013) Metaheuristic applications in structures and infrastructures. Newnes, Oxford

    Google Scholar 

  6. Yang XS, Deb S, Hanne T, He X (2015) Attraction and diffusion in nature-inspired optimization algorithms. Neural Comput Appl 24:1–8

    Google Scholar 

  7. Ouaarab A, Ahiod B, Yang XS (2014) Discrete cuckoo search algorithm for the travelling salesman problem. Neural Comput Appl 24(7–8):1659–1669

    Article  Google Scholar 

  8. Yang XS, Gandomi AH, Talatahari S, Alavi AH (2012) Metaheuristics in water, geotechnical and transport engineering. Newnes, Oxford

    Google Scholar 

  9. Horst R, Tuy H (2013) Global optimization: deterministic approaches. Springer, Berlin

    MATH  Google Scholar 

  10. Ding S, Zhang Y, Chen J, Jia W (2013) Research on using genetic algorithms to optimize Elman neural networks. Neural Comput Appl 23(2):293–297

    Article  Google Scholar 

  11. Mitchell M (1998) An introduction to genetic algorithms. MIT press, Cambridge

    MATH  Google Scholar 

  12. Zhao M, Ren J, Ji L, Fu C, Li J, Zhou M (2012) Parameter selection of support vector machines and genetic algorithm based on change area search. Neural Comput Appl 21(1):1–8

    Article  Google Scholar 

  13. Khatib W, Fleming PJ (1998) The stud GA: a mini revolution? In: International conference on parallel problem solving from nature. Springer, Berlin, pp 683–691

  14. Storn R, Price K (1997) Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359

    Article  MathSciNet  MATH  Google Scholar 

  15. Beyer HG, Schwefel HP (2002) Evolution strategies—a comprehensive introduction. Neural Comput 1(1):3–52

    MathSciNet  MATH  Google Scholar 

  16. Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection, vol 1. MIT press, Cambridge

    MATH  Google Scholar 

  17. Glover F (1989) Tabu search—part I. ORSA J Comput 1(3):190–206

    Article  MATH  Google Scholar 

  18. Glover F (1990) Tabu search-part II. ORSA J Comput 2(1):4–32

    Article  MATH  Google Scholar 

  19. Glover F, Laguna M (2013) Tabu search. In: Du DZ, Pardalos PM (eds) Handbook of combinatorial optimization. Springer, Berlin, pp 3261–3362

    Chapter  Google Scholar 

  20. Li X, Yin M (2014) Self-adaptive constrained artificial bee colony for constrained numerical optimization. Neural Comput Appl 24(3–4):723–734

    Article  Google Scholar 

  21. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Glob Optim 39(3):459–471

    Article  MathSciNet  MATH  Google Scholar 

  22. Eberhart RC, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the sixth international symposium on micro machine and human science. New York, NY, pp 39–43

  23. Mirjalili S, Wang GG, Coelho LdS (2014) Binary optimization using hybrid particle swarm optimization and gravitational search algorithm. Neural Comput Appl 25(6):1423–1435

    Article  Google Scholar 

  24. Yang XS (2009) Firefly algorithms for multimodal optimization. In: International symposium on stochastic algorithms. Springer, Berlin, pp 169–178

  25. Fister I, Yang XS, Brest J (2013) A comprehensive review of firefly algorithms. Swarm Evol Comput 13:34–46

    Article  Google Scholar 

  26. Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12(6):702–713

    Article  Google Scholar 

  27. Wang GG, Gandomi AH, Alavi AH (2014) An effective krill herd algorithm with migration operator in biogeography-based optimization. Appl Math Model 38(9):2454–2462

    Article  MathSciNet  MATH  Google Scholar 

  28. Xiong P, Wang Z, Malkowski S, Wang Q, Saremi S, Mirjalili S, Lewis A (2014) Biogeography-based optimisation with chaos. Neural Comput Appl 25(5):1077–1097

    Article  Google Scholar 

  29. Colorni A, Dorigo M, Maniezzo V (1991) Distributed optimization by ant colonies. In: Proceedings of the first European conference on artificial life. Paris, France, pp 134–142

  30. Dorigo M, Blum C (2005) Ant colony optimization theory: a survey. Theor Comput Sci 344(2):243–278

    Article  MathSciNet  MATH  Google Scholar 

  31. Socha K, Blum C (2007) An ant colony optimization algorithm for continuous optimization: application to feed-forward neural network training. Neural Comput Appl 16(3):235–247

    Article  Google Scholar 

  32. Yang XS, Deb S (2009) Cuckoo search via Levy flights. In: Nature and biologically inspired computing, 2009. NaBIC 2009. World Congress on 2009. IEEE, pp 210–214

  33. Li X, Zhang J, Yin M (2014) Animal migration optimization: an optimization algorithm inspired by animal migration behavior. Neural Comput Appl 24(7–8):1867–1877

    Article  Google Scholar 

  34. Yang XS (2010) A new metaheuristic bat-inspired algorithm. In: Nature inspired cooperative strategies for optimization (NICSO 2010). Springer, Berlin, pp 65–74

  35. Gandomi AH, Yang XS, Alavi AH, Talatahari S (2013) Bat algorithm for constrained optimization tasks. Neural Comput Appl 22(6):1239–1255

    Article  Google Scholar 

  36. Meng X, Liu Y, Gao X, Zhang H (2014) A new bio-inspired algorithm: chicken swarm optimization. In: International conference in swarm intelligence. Springer, Berlin, pp 86–94

  37. Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw 83:80–98

    Article  Google Scholar 

  38. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

  39. Gandomi AH, Alavi AH (2012) Krill herd: a new bio-inspired optimization algorithm. Commun Nonlinear Sci 17(12):L4831–4845

    Article  MathSciNet  MATH  Google Scholar 

  40. Li J, Tang Y, Hua C, Guan X (2014) An improved krill herd algorithm: krill herd with linear decreasing step. Appl Math Comput 234:356–367

    MathSciNet  MATH  Google Scholar 

  41. Geem ZW, Kim JH, Loganathan G (2001) A new heuristic optimization algorithm: harmony search. Simulation 76(2):60–68

    Article  Google Scholar 

  42. Wang GG, Deb S, Cui Z (2015) Monarch butterfly optimization. Neural Comput Appl 28:1–20

    Google Scholar 

  43. Ghetas M, Yong CH, Sumari P (2015) Harmony-based monarch butterfly optimization algorithm. In: Proceedings of the 2015 IEEE international conference control system, computing and engineering (ICCSCE). IEEE, pp 156–161

  44. Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  45. Wang G, Guo L (2013) A novel hybrid bat algorithm with harmony search for global numerical optimization. J Appl Math 2013:1–21

    MathSciNet  MATH  Google Scholar 

  46. Wang GG, Gandomi AH, Zhao X, Chu HCE (2016) Hybridizing harmony search algorithm with cuckoo search for global numerical optimization. Soft Comput 20(1):273–285

    Article  Google Scholar 

  47. Mahdavi M, Fesanghary M, Damangir E (2007) An improved harmony search algorithm for solving optimization problems. Appl Math Comput 188(2):1567–1579

    MathSciNet  MATH  Google Scholar 

  48. Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evol Comput 3(2):82–102

    Article  Google Scholar 

  49. Storn R, Price K (1997) Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359

    Article  MathSciNet  MATH  Google Scholar 

  50. Beyer HG (2013) The theory of evolution strategies. Springer, New York, pp 1–373

    Google Scholar 

  51. Yang S, Yao X (2005) Experimental study on population-based incremental learning algorithms for dynamic optimization problems. Soft Comput 9(11):815–834

    Article  MATH  Google Scholar 

  52. Ghetas M, Yong CH (2017) Resource management framework for multi-tier service using case-based reasoning and optimization algorithm. Arab J Sci Eng 43:1–15

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Ghetas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghetas, M., Chan, H.Y. Integrating mutation scheme into monarch butterfly algorithm for global numerical optimization. Neural Comput & Applic 32, 2165–2181 (2020). https://doi.org/10.1007/s00521-018-3676-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-018-3676-x

Keywords

Navigation