Skip to main content
Log in

No-reference image quality assessment based on sparse representation

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The human visual system is sensitive to structural information in images, and modeling this information has been regarded as useful for predicting their perceptual quality. In this study, we propose a no-reference (NR) image quality assessment (IQA) method based on a sparse representation of the distribution of structural information. The grayscale fluctuation map of an image is first calculated and divided into patches of fixed size that are rearranged into column vectors, which are regarded as structural elements of the image. Following this, using sparse coding, these structural elements can be represented by sparse representation coefficients and a trained dictionary. By using the former, a probability vector for observing different elements in the trained dictionary can then be obtained. Finally, the prediction model is trained using support vector regression. The results of experiments to test the proposed method show that it can accurately predict humans’ perception of image quality and is competitive in comparison with prevalent NR–IQA methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gu K, Zhai G, Yang X et al (2015) Automatic contrast enhancement technology with saliency preservation. IEEE Trans Circuits Syst Video Technol 25(9):1480–1494

    Article  Google Scholar 

  2. Gu K, Zhai G, Lin W et al (2016) The analysis of image contrast: from quality assessment to automatic enhancement. IEEE Trans Cybern 46(1):284–297

    Article  Google Scholar 

  3. Lin W, Jay Kuo CC (2011) Perceptual visual quality metrics: a survey. J Vis Commun Image Represent 22(4):297–312

    Article  Google Scholar 

  4. Ma L, Deng C, Ngan KN et al (2013) Recent advances and challenges of visual signal quality assessment. China Commun 10(5):62–78

    Article  Google Scholar 

  5. Wang Z, Bovik AC, Sheikh HR et al (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612

    Article  Google Scholar 

  6. Sheikh HR, Bovik AC (2006) Image information and visual quality. IEEE Trans Image Process 15(2):430–444

    Article  Google Scholar 

  7. Zhang L, Zhang L, Mou X et al (2011) FSIM: a feature similarity index for image quality assessment. IEEE Trans Image Process 20(8):2378

    Article  MathSciNet  MATH  Google Scholar 

  8. Narwaria M, Lin W (2012) SVD-based quality metric for image and video using machine learning. IEEE Trans Syst Man Cybern Part B Cybern 42(2):347–364

    Article  Google Scholar 

  9. Chang HW, Yang H, Gan Y et al (2013) Sparse feature fidelity for perceptual image quality assessment. IEEE Trans Image Process 22(10):4007–4018

    Article  MathSciNet  MATH  Google Scholar 

  10. Tao D, Li X, Lu W et al (2009) Reduced-reference IQA in contourlet domain. IEEE Trans Syst Man Cybern Part B Cybern 39(6):1623–1627

    Article  Google Scholar 

  11. Rehman A, Zhou R (2012) Reduced-reference image quality assessment by structural similarity estimation. IEEE Trans Image Process 21(8):3378–3389

    Article  MathSciNet  MATH  Google Scholar 

  12. Wu J, Lin W, Shi G et al (2013) Reduced-reference image quality assessment with visual information fidelity. IEEE Trans Multimed 15(7):1700–1705

    Article  Google Scholar 

  13. Pan F, Lin X, Rahardja S et al (2004) A locally adaptive algorithm for measuring blocking artifacts in images and videos. Signal Process Image Commun 19(6):499–506

    Article  Google Scholar 

  14. Liu H, Klomp N, Heynderickx I (2010) A no-reference metric for perceived ringing artifacts in images. IEEE Trans Circuits Syst Video Technol 20(4):529–539

    Article  Google Scholar 

  15. Ferzli R, Karam LJ (2009) A no-reference objective image sharpness metric based on the notion of just noticeable blur (JNB). IEEE Trans Image Process 18(4):717–728

    Article  MathSciNet  MATH  Google Scholar 

  16. Liang L, Wang S, Chen J et al (2010) No-reference perceptual image quality metric using gradient profiles for JPEG2000. Signal Process Image Commun 25(7):502–516

    Article  Google Scholar 

  17. Moorthy AK, Bovik AC (2010) A two-step framework for constructing blind image quality indices. IEEE Signal Process Lett 17(5):513–516

    Article  Google Scholar 

  18. Moorthy AK, Bovik AC (2011) Blind image quality assessment: from natural scene statistics to perceptual quality. IEEE Trans Image Process 20(12):3350

    Article  MathSciNet  MATH  Google Scholar 

  19. Saad MA, Bovik AC, Charrier C (2010) A DCT statistics-based blind image quality index. IEEE Signal Process Lett 17(6):583–586

    Article  Google Scholar 

  20. Saad MA, Bovik AC, Charrier C (2012) Blind image quality assessment: a natural scene statistics approach in the DCT domain. IEEE Trans Image Process 21(8):3339–3352

    Article  MathSciNet  MATH  Google Scholar 

  21. Mittal A, Moorthy AK, Bovik AC (2012) No-reference image quality assessment in the spatial domain. IEEE Trans Image Process 21(12):4695–4708

    Article  MathSciNet  MATH  Google Scholar 

  22. Ghadiyaram D, Bovik AC (2017) Perceptual quality prediction on authentically distorted images using a bag of features approach. J Vis 17(1):32

    Article  Google Scholar 

  23. Jenadeleh M, Masaeli MM, Moghaddam ME (2017) Blind image quality assessment based on aesthetic and statistical quality-aware features. J Electron Imaging 26(4):1

    Article  Google Scholar 

  24. Ma K, Liu W, Liu T et al (2017) dipIQ: blind image quality assessment by learning-to-rank discriminable image pairs. IEEE Trans Image Process 26(8):3951–3964

    Article  MathSciNet  MATH  Google Scholar 

  25. Kim J, Lee S (2017) Fully deep blind image quality predictor. IEEE J Sel Top Signal Process 11(1):206–220

    Article  Google Scholar 

  26. Mittal A, Soundararajan R, Bovik AC (2013) Making a “completely blind” image quality analyzer. IEEE Signal Process Lett 20(3):209–212

    Article  Google Scholar 

  27. Zhang L, Zhang L, Bovik AC (2015) A feature-enriched completely blind image quality evaluator. IEEE Trans Image Process 24(8):2579–2591

    Article  MathSciNet  MATH  Google Scholar 

  28. Lu X, Wang Y, Yuan Y (2013) Sparse coding from a Bayesian perspective. IEEE Trans Neural Netw Learn Syst 24(6):929–939

    Article  Google Scholar 

  29. Lu X, Yuan Y, Yan P (2013) Image super-resolution via double sparsity regularized manifold learning. IEEE Trans Circuits Syst Video Technol 23(12):2022–2033

    Article  Google Scholar 

  30. Chen L, Liu L, Chen CLP (2016) A robust bi-sparsity model with non-local regularization for mixed noise reduction. Inf Sci 354:101–111

    Article  Google Scholar 

  31. Yu J, Rui Y, Tao D (2014) Click prediction for web image reranking using multimodal sparse coding. IEEE Trans Image Process 23(5):2019–2032

    Article  MathSciNet  MATH  Google Scholar 

  32. Olshausen BA, Field DJ (1997) Sparse coding with an overcomplete basis set: a strategy employed by V1? Vis Res 37(23):3311–3325

    Article  Google Scholar 

  33. Bell AJ, Sejnowski TJ (1997) The, “independent components” of natural scenes are edge filters. Vis Res 37(23):3327–3338

    Article  Google Scholar 

  34. Yuan Y, Guo Q, Lu X (2015) Image quality assessment: a sparse learning way. Neurocomputing 159(1):227–241

    Article  Google Scholar 

  35. Yang X, Sun Q, Wang T (2014) Completely blind image quality assessment based on gray-scale fluctuations[C]. In: International conference on digital image processing, p 915916

  36. Yang X, Sun Q, Wang T (2016) Image quality assessment via spatial structural analysis. Comput Electr Eng. https://doi.org/10.1016/j.compeleceng.2016.08.014

    Article  Google Scholar 

  37. Yang X, Sun Q, Wang T (2016) Blind image quality assessment via probabilistic latent semantic analysis. Springerplus 5(1):1714

    Article  Google Scholar 

  38. Sheikh HR, Sabir MF, Bovik AC (2006) A statistical evaluation of recent full reference image quality assessment algorithms. IEEE Trans Image Process 15(11):3440–3451

    Article  Google Scholar 

  39. Larson EC, Chandler DM (2010) Most apparent distortion: full-reference image quality assessment and the role of strategy. J Electron Imaging 19(1):011006

    Article  Google Scholar 

  40. Ponomarenko N, Lukin V, Zelensky A et al (2009) TID2008-a database for evaluation of full-reference visual quality assessment metrics. Adv Mod Radioelectron 10(4):30–45

    Google Scholar 

  41. Ponomarenko N, Jin L, Ieremeiev O et al (2015) Image database TID2013: peculiarities, results and perspectives. Signal Process Image Commun 30:57–77

    Article  Google Scholar 

  42. Ji H, Liu C (2008) Motion blur identification from image gradients. In: IEEE conference on computer vision and pattern recognition, 2008. CVPR 2008. IEEE, pp 1–8

  43. Ghadiyaram D, Bovik AC (2015) Massive online crowdsourced study of subjective and objective picture quality. IEEE Trans Image Process 25(1):372–387

    Article  MathSciNet  MATH  Google Scholar 

  44. Chang CC, Lin CJ (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol (TIST) 2(3):27

    Google Scholar 

  45. Liu L, Liu B, Huang H et al (2014) No-reference image quality assessment based on spatial and spectral entropies. Signal Process Image Commun 29(8):856–863

    Article  Google Scholar 

  46. Oyedotun OK, Khashman A (2017) Deep learning in vision-based static hand gesture recognition. Neural Comput Appl 28(12):3941–3951

    Article  Google Scholar 

  47. Zhang H, Cao X, Ho JKL et al (2017) Object-level video advertising: an optimization framework. IEEE Trans Ind Inf 13(2):520–531

    Article  Google Scholar 

Download references

Acknowledgements

This paper is supported by the National Science Foundation of China (Grant No. 61673220).

Author information

Authors and Affiliations

Authors

Contributions

XY conceived, designed, and performed the experiments. XY and QS analyzed the data. XY, QS, and TW wrote and reviewed the paper. XY, QS, TW approved the final version of the paper.

Corresponding author

Correspondence to Xichen Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Sun, Q. & Wang, T. No-reference image quality assessment based on sparse representation. Neural Comput & Applic 31, 6643–6658 (2019). https://doi.org/10.1007/s00521-018-3497-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-018-3497-y

Keywords

Navigation