Skip to main content
Log in

Piecewise asymptotically almost automorphic solutions for impulsive non-autonomous high-order Hopfield neural networks with mixed delays

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper is concerned with an impulsive non-autonomous high-order Hopfield neural network with mixed delays. Under proper conditions, we studied the existence, the uniqueness and the global exponential stability of asymptotic almost automorphic solutions for the suggested system. Our method was mainly based on the Banach’s fixed-point theorem and the generalized Gronwall–Bellman inequality. Moreover, four examples are presented to demonstrate the effectiveness of the proposed findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Abbas S, Mahto L, Hafayed M, Alimi AM (2014) Asymptotic almost automorphic solutions of impulsive neural network with almost automorphic coefficients. Neurocomputing 142:326–33

    Article  Google Scholar 

  2. Abbas S, Kavitha V, Murugesu R (2015) Stepanov-like weighted pseudo almost automorphic solutions to fractional order abstract integro-differential equations. Proc Math Sci 125(3):323–351

    Article  MathSciNet  MATH  Google Scholar 

  3. Abbas S, Chang YK, Hafayed M (2014) Stepanov type weighted pseudo almost automorphic sequences and their applications to difference equations. Nonlinear Stud 21(1):99–111

    MathSciNet  MATH  Google Scholar 

  4. Abbas S, Yonghui XIA (2013) Existence and attractivity of k-almost automorphic sequence solution of a model of cellular neural networks with delay. Acta Math Sci 33(1):290–302

    Article  MathSciNet  MATH  Google Scholar 

  5. Abbas S, Xia Y (2015) Almost automorphic solutions of impulsive cellular neural networks with piecewise constant argument. Neural Process Lett 42(3):691–702

    Article  Google Scholar 

  6. Ammar B, Chérif F, Alimi AM (2012) Existence and uniqueness of pseudo almost-periodic solutions of recurrent neural networks with time-varying coefficients and mixed delays. IEEE Trans Neural Netw Learn Syst 23(1):109–118

    Article  Google Scholar 

  7. Aouiti C, M’hamdi MS, Touati A (2017) Pseudo almost automorphic solutions of recurrent neural networks with time-varying coefficients and mixed delays. Neural Process Lett 45(1):121–140

    Article  Google Scholar 

  8. Aouiti C, M’hamdi MS, Cao J, Alsaedi A (2017) Piecewise pseudo almost periodic solution for impulsive generalised high-order Hopfield neural networks with leakage delays. Neural Process Lett 45(2):615–648

    Article  Google Scholar 

  9. Aouiti C (2016) Oscillation of impulsive neutral delay generalized high-order Hopfield neural networks. Neural Comput Appl. https://doi.org/10.1007/s00521-016-2558-3

    Article  Google Scholar 

  10. Aouiti C (2016) Neutral impulsive shunting inhibitory cellular neural networks with time-varying coefficients and leakage delays. Cogn Neurodyn 10(6):573–591

    Article  MathSciNet  Google Scholar 

  11. Aouiti C, M’hamdi MS, Chérif F (2017) New results for impulsive recurrent neural networks with time-varying coefficients and mixed delays. Neural Process Lett 46(2):487–506

    Article  Google Scholar 

  12. Aouiti C, Coirault P, Miaadi F, Moulay E (2017) Finite time boundedness of neutral high-order Hopfield neural networks with time delay in the leakage term and mixed time delays. Neurocomputing 260:378–392

    Article  Google Scholar 

  13. Aouiti C, M’hamdi MS, Chérif F, Alimi AM (2017) Impulsive generalised high-order recurrent neural networks with mixed delays: stability and periodicity. Neurocomputing. https://doi.org/10.1016/j.neucom.2017.11.037

    Article  Google Scholar 

  14. Brahmi H, Ammar B, Chérif F, Alimi AM (2014) On the dynamics of the high-order type of neural networks with time varying coefficients and mixed delay. In: 2014 international joint conference on neural networks (IJCNN), pp 2063–2070

  15. Brahmi H, Ammar B, Chérif F, Alimi AM, Abraham A (2016) Asymptotically almost automorphic solution of high order recurrent neural networks with mixed delays. Int J Comput Sci Inf Secur 14(7):284

    Google Scholar 

  16. Brahmi H, Ammar B, Alimi AM, Chérif F (2016) Pseudo almost periodic solutions of impulsive recurrent neural networks with mixed delays. In: 2016 international joint conference on neural networks (IJCNN), pp 464–470. IEEE

  17. Cai SM, Xu FD, Zheng WX, Liu ZR (2009) Exponential stability analysis for impulsive neural networks with time-varying delays. In: Optimization and systems biology: the third international symposium, OSB’09, Zhangjiajie, China, 20–22 Sept 2009. Proceedings, pp 81–88

  18. Cao J, Wang L (2002) Exponential stability and periodic oscillatory solution in BAM networks with delays. IEEE Trans Neural Netw 13(2):457–463

    Article  Google Scholar 

  19. Cao J (2003) New results concerning exponential stability and periodic solutions of delayed cellular neural networks. Phys Lett A 307(2):136–147

    Article  MathSciNet  MATH  Google Scholar 

  20. Cao J, Wang J (2005) Global asymptotic and robust stability of recurrent neural networks with time delays. IEEE Trans Circuits Syst I Regul Pap 52(2):417–426

    Article  MathSciNet  MATH  Google Scholar 

  21. Cao J, Liang J, Lam J (2004) Exponential stability of high-order bidirectional associative memory neural networks with time delays. Phys D Nonlinear Phenom 199(3):425–436

    Article  MathSciNet  MATH  Google Scholar 

  22. Cao J, Chen A, Huang X (2005) Almost periodic attractor of delayed neural networks with variable coefficients. Phys Lett A 340(1):104–120

    Article  MATH  Google Scholar 

  23. Cao J, Song Q (2006) Stability in Cohen–Grossberg-type bidirectional associative memory neural networks with time-varying delays. Nonlinearity 19(7):1601–1617

    Article  MathSciNet  MATH  Google Scholar 

  24. Chang YK, Cheng ZX, N’Guérékata GM (2016) Stepanov-like pseudo almost automorphic solutions to some stochastic differential equations. Bull Malays Math Sci Soc 39(1):181–197

    Article  MathSciNet  MATH  Google Scholar 

  25. Chang YK, Luo XX (2015) Pseudo almost automorphic behavior of solutions to a semi-linear fractional differential equation. Math Commun 20(1):53–68

    MathSciNet  MATH  Google Scholar 

  26. Chang YK, Bian YT (2015) Weighted asymptotic behavior of solutions to a Sobolev-type differential equation with Stepanov coefficients in Banach spaces. Filomat 29(6):1315–1328

    Article  MathSciNet  MATH  Google Scholar 

  27. Chang YK, Zhang R, N’Guérékata GM (2014) Weighted pseudo almost automorphic solutions to nonautonomous semilinear evolution equations with delay and ${S}^{p} $-weighted pseudo almost automorphic coefficients. Topol Methods Nonlinear Anal 43(1):69–88

    Article  MathSciNet  MATH  Google Scholar 

  28. Chang YK, Luo XX (2014) Existence of $\mu $-pseudo almost automorphic solutions to a neutral differential equation by interpolation theory. Filomat 28(3):603–614

    Article  MathSciNet  MATH  Google Scholar 

  29. Chavez A, Castillo S, Pinto M (2013) Discontinuous almost automorphic functions and almost automorphic solutions of differential equations with piecewise constant argument. Electron J Differ Equ 56:113

    MATH  Google Scholar 

  30. Chen A, Cao J (2003) Existence and attractivity of almost periodic solutions for cellular neural networks with distributed delays and variable coefficients. Appl Math Comput 134(1):125–140

    MathSciNet  MATH  Google Scholar 

  31. Chérif F (2014) Sufficient conditions for global stability and existence of almost automorphic solution of a class of RNNs. Differ Equ Dyn Syst 22(2):191–207

    Article  MathSciNet  MATH  Google Scholar 

  32. Diagana T (2013) Almost automorphic type and almost periodic type functions in abstract spaces. Springer, New York

    Book  MATH  Google Scholar 

  33. Gerlee P, Anderson AR (2009) Modelling evolutionary cell behaviour using neural networks: application to tumour growth. Biosystems 95(2):166–174

    Article  Google Scholar 

  34. Huang X, Cao J, Ho DW (2006) Existence and attractivity of almost periodic solution for recurrent neural networks with unbounded delays and variable coefficients. Nonlinear Dyn 45(3):337–351

    Article  MathSciNet  MATH  Google Scholar 

  35. Kavitha V, Abbas S, Murugesu R (2015) Asymptotically almost automorphic solutions of fractional order neutral integro-differential equations. Bull Malays Math Sci Soc 39(3):1075–1088

    Article  MathSciNet  MATH  Google Scholar 

  36. Kavitha V, Wang PZ, Murugesu R (2013) Existence of weighted pseudo almost automorphic mild solutions to fractional integro-differential equations. J Fract Calc Appl 4(1):37–55

    Google Scholar 

  37. Li Y (2013) Periodic solutions of non-autonomous cellular neural networks with impulses and delays on time scales. IMA J Math Control Inf 31(2):273–293

    Article  MathSciNet  MATH  Google Scholar 

  38. Liang J, Zhang J, Xiao TJ (2008) Composition of pseudo almost automorphic and asymptotically almost automorphic functions. J Math Anal Appl 340(2):1493–1499

    Article  MathSciNet  MATH  Google Scholar 

  39. M’hamdi MS, Aouiti C, Touati A, Alimi AM, Snasel V (2016) Weighted pseudo almost-periodic solutions of shunting inhibitory cellular neural networks with mixed delays. Acta Math Sci 36(6):1662–1682

    Article  MathSciNet  MATH  Google Scholar 

  40. Mahto L, Abbas S (2015) PC-almost automorphic solution of impulsive fractional differential equations. Mediterr J Math 12(3):771–790

    Article  MathSciNet  MATH  Google Scholar 

  41. Marcus CM, Westervelt RM (1988) Dynamics of analog neural networks with time delay. In: NIPS, pp 568–576

  42. Marcus CM, Westervelt RM (1989) Stability of analog neural networks with delay. Phys Rev A 39(1):347

    Article  MathSciNet  Google Scholar 

  43. Moghtadaei M, Golpayegani MRH, Malekzadeh R (2013) A variable structure fuzzy neural network model of squamous dysplasia and esophageal squamous cell carcinoma based on a global chaotic optimization algorithm. J Theor Biol 318:164–172

    Article  MathSciNet  MATH  Google Scholar 

  44. Mohamad S (2007) Exponential stability in Hopfield-type neural networks with impulses. Chaos Solitons Fractals 32(2):456–467

    Article  MathSciNet  MATH  Google Scholar 

  45. Mohamad S, Gopalsamy K, Akca H (2008) Exponential stability of artificial neural networks with distributed delays and large impulses. Nonlinear Anal Real World Appl 9(3):872–888

    Article  MathSciNet  MATH  Google Scholar 

  46. N’Guérékata GM (1981) Sur les solutions presque automorphes d’équations différentielles abstraites. Ann Sci Math Quebec 5(1):69–79

    MathSciNet  MATH  Google Scholar 

  47. N’Guérékata GM (1987) Some remarks on asymptotically almost automorphic functions. Riv Math Universita di Parma 13(4):301–303

    MathSciNet  MATH  Google Scholar 

  48. Rakkiyappan R, Pradeep C, Vinodkumar A, Rihan FA (2013) Dynamic analysis for high-order Hopfield neural networks with leakage delay and impulsive effects. Neural Comput Appl 22(1):55–73

    Article  Google Scholar 

  49. Ren F, Cao J (2006) LMI-based criteria for stability of high-order neural networks with time-varying delay. Nonlinear Anal Real World Appl 7(5):967–979

    Article  MathSciNet  MATH  Google Scholar 

  50. Ren F, Cao J (2007) Periodic oscillation of higher-order bidirectional associative memory neural networks with periodic coefficients and delays. Nonlinearity 20(3):605–629

    Article  MathSciNet  MATH  Google Scholar 

  51. Ren F, Cao J (2007) Periodic solutions for a class of higher-order Cohen–Grossberg type neural networks with delays. Comput Math Appl 54(6):826–839

    Article  MathSciNet  MATH  Google Scholar 

  52. Stamov GT (2012) Almost periodic solutions of impulsive differential equations. Springer, Berlin

    Book  MATH  Google Scholar 

  53. Stamov GT (2004) Impulsive cellular neural networks and almost periodicity. Proc Jpn Acad Ser A Math Sci 80(10):198–203

    Article  MathSciNet  MATH  Google Scholar 

  54. Shi P, Dong L (2010) Existence and exponential stability of anti-periodic solutions of Hopfield neural networks with impulses. Appl Math Comput 216(2):623–630

    MathSciNet  MATH  Google Scholar 

  55. Tonnesen J (2013) Optogenetic cell control in experimental models of neurological disorders. Behav Brain Res 255:35–43

    Article  Google Scholar 

  56. Tyagi S, Abbas S, Hafayed M (2016) Global Mittag–Leffler stability of complex valued fractional-order neural network with discrete and distributed delays. Rendiconti del Circolo Matematico di Palermo Series 2 65(3):485–505

    Article  MathSciNet  MATH  Google Scholar 

  57. Wang C (2016) Piecewise pseudo almost periodic solution for impulsive non-autonomous high-order Hopfield neural networks with variable delays. Neurocomputing 171:1291–1301

    Article  Google Scholar 

  58. Wang C, Agarwal RP (2015) Weighted piecewise pseudo almost automorphic functions with applications to abstract impulsive $\nabla $-dynamic equations on time scales. Adv Differ Equ 2014(1):153

    Article  MATH  Google Scholar 

  59. Wang J, Jiang H, Hu C (2014) Existence and stability of periodic solutions of discrete-time Cohen–Grossberg neural networks with delays and impulses. Neurocomputing 142:542–550

    Article  Google Scholar 

  60. Wang Y, Xiong W, Zhou Q, Xiao B, Yu Y (2006) Global exponential stability of cellular neural networks with continuously distributed delays and impulses. Phys Lett A 350(1):89–95

    Article  MATH  Google Scholar 

  61. Weng YF, Ju L, Wang J (2007) Cellular neural networks and biological visual information processing model. J Beijing Technol Bus Univ (Nat Sci Ed) 25(1):42–58

    Google Scholar 

  62. Xiong W (2015) New result on convergence for HCNNs with time-varying leakage delays. Neural Comput Appl 26(2):485–491

    Article  Google Scholar 

  63. Xu C, Li P (2016) Pseudo almost periodic solutions for high-order Hopfield neural networks with time-varying leakage delays. Neural Process Lett 46(1):41–58

    Article  Google Scholar 

  64. Xu B, Liu X, Teo KL (2009) Asymptotic stability of impulsive high-order Hopfield type neural networks. Comput Math Appl 57(11):1968–1977

    Article  MathSciNet  MATH  Google Scholar 

  65. Xia Z (2016) Pseudo almost periodic mild solution of nonautonomous impulsive integro-differential equations. Mediterr J Math 13(3):1065–1086

    Article  MathSciNet  MATH  Google Scholar 

  66. Yang Y, Cao J (2007) Stability and periodicity in delayed cellular neural networks with impulsive effects. Nonlinear Anal Real World Appl 8(1):362–374

    Article  MathSciNet  MATH  Google Scholar 

  67. Yang X, Cao J, Huang C, Long Y (2010) Existence and global exponential stability of almost periodic solutions for SICNNs with nonlinear behaved functions and mixed delays. In: Abstract and applied analysis. Hindawi Publishing Corporation

  68. Zhang Q, Wei X, Xu J (2003) Global exponential stability of Hopfield neural networks with continuously distributed delays. Phys Lett A 315(6):431–436

    Article  MathSciNet  MATH  Google Scholar 

  69. Zhu Q, Liang F, Zhang Q (2009) Global exponential stability of Cohen-Grossberg neural networks with time-varying delays and impulses. J Shanghai Univ (Engl Ed) 13(3):255–259

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaouki Aouiti.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Appendices

Appendix 1: Proof of the Lemma 1

Proof

Let \(\varphi (.)\in AAA(\mathbb {R},\mathbb {R})\), it can be written as \(\varphi (.)=\varphi _1 (.)+\varphi _2 (.)\) where \(\varphi _1 (.) \in AA(\mathbb {R},\mathbb {R})\) and \(\varphi _2 (.)\in PC_0(\mathbb {R},\mathbb {R}).\)

First, we know that the space \(AA(\mathbb {R},\mathbb {R})\) is translation invariant, then for \(h\in \mathbb {R},\) we have \(\varphi _1(.-h) \in AA(\mathbb {R},\mathbb {R}).\)

Second, we prove that \(\varphi _2(.-h) \in PC_0(\mathbb {R},\mathbb {R}).\)

For \(\varphi _2 (.)\in PC_0(\mathbb {R},\mathbb {R}),\) we have: \(\varphi _2 (.) \in PC(\mathbb {R},\mathbb {R}),\) such that \(\varphi _2(t)\) is continuous at t for any \(t \notin \{ t_i , i \in \mathbb {Z}\},\)\(\varphi _2(t_i^+),\varphi _2(t_i^-)\) exists and \(\varphi _2(t_i^-)=\varphi _2(t_i).\)

Therefore, for \(h\in \mathbb {R},\)\(\varphi _2(t-h)\) is continuous at \((t-h)\) for any \((t-h)\notin \{ t_i , i \in \mathbb {Z}\},\)\(\varphi _2((t_i-h)^+),\varphi _2((t_i-h)^-)\) exist and \(\varphi _2((t_i-h)^-)=\varphi _2(t_i-h).\) Then, \(\varphi _2(t-h) \in PC(\mathbb {R},\mathbb {R}).\)

On the other hand, we have \(\lim \nolimits _{t\longrightarrow \infty } \Vert \varphi _2(t)\Vert =0, \;\) then for h in \(\mathbb {R},\lim \nolimits _{t\longrightarrow \infty } \Vert \varphi _2(t-h)\Vert =0.\) This completes the proof. \(\square\)

Appendix 2: Proof of Lemma 2

Proof

By definition, we can write \(\varphi =\varphi _1+\varphi _2,\)\(\psi =\psi _1+\psi _2\) where \(\varphi _1,\psi _1 \in AA(\mathbb {R},\mathbb {R}),\)\(\varphi _2,\psi _2 \in PC_0(\mathbb {R},\mathbb {R}).\)

Obviously, \(\varphi \times \psi =\varphi _1 \times \psi _1 +\varphi _1 \times \psi _2 +\varphi _2 \times \psi _1 +\varphi _2 \times \psi _2,\) we have \(\varphi _1 \times \psi _1 \in AA(\mathbb {R},\mathbb {R}).\)

On the other hand, \(\varphi _1 \times \psi _2 +\varphi _2 \times \psi _1 +\varphi _2 \times \psi _2 \in PC(\mathbb {R},\mathbb {R}),\) and

$$\begin{aligned}&\Vert \varphi _1 \times \psi _2 +\varphi _2 \times \psi _1 +\varphi _2 \times \psi _2 \Vert \\ &\quad \le \Vert \varphi _1\Vert _\infty \times \Vert \psi _2\Vert +\Vert \varphi _2\Vert \times \Vert \psi _1\Vert _{\infty } +\Vert \varphi _2\Vert _\infty \times \Vert \psi _2\Vert , \end{aligned}$$

which implies that \(\varphi _1 \times \psi _2 +\varphi _2 \times \psi _1 +\varphi _2 \times \psi _2 \in PC_0(\mathbb {R},\mathbb {R}).\)

Then, \(\varphi \times \psi \in AAA(\mathbb {R},\mathbb {R}).\) This completes the proof. \(\square\)

Appendix 3: Proof of Lemma 3

Proof

By definition, we have \(\phi (.)=\phi _1 (.)+\phi _2 (.)\) where \(\phi _1 (.)\in AA(\mathbb {R},\mathbb {R}^n), \phi _2 (.)\in PC_0(\mathbb {R},\mathbb {R}^n).\) Let

$$\begin{aligned} G(t) &= f(\phi (t-\varsigma )) \\ & = f(\phi _1(t-\varsigma )) \\ &+\bigg [ f(\phi _1(t-\varsigma ))+\phi _2(t-\varsigma )) -f(\phi _1(t-\varsigma ))\bigg ] \\ & = G_1(t)+G_2(t) \end{aligned}$$
(16)

First, let \(\left( s_{n}^{\prime }\right) _{n \in \mathbb {N}}\) be a sequence of real numbers. By hypothesis we can extract a subsequence \((s_{n})_{n \in \mathbb {N}}\) of \(\left( s_{n}^{\prime }\right) _{n \in \mathbb {N}}\) such that \(\lim \nolimits _{n\rightarrow +\infty } \phi _1\left( t-\varsigma +s_{n}\right) =\phi _1^1(t-\varsigma ),\; \forall t \in \mathbb {R}\) and \(\lim \nolimits _{n\rightarrow +\infty } \phi _1^1\left( t-\varsigma -s_{n}\right) =\phi _1(t-\varsigma ),\; \forall t \in \mathbb {R}.\) Obviously,

$$\begin{aligned}&|G_1(t+s_n)-f(\phi _1^1(t-\varsigma ))|\\ &\quad =|f(\phi _1(t-\varsigma +s_{n}))-f(\phi _1^1(t-\varsigma ))| \\ &\quad \le l^j_f|\phi _1(t-\varsigma +s_{n})-\phi _1^1(t-\varsigma )| \rightarrow 0, \; n\rightarrow +\infty . \end{aligned}$$

Therefore, \(\lim \nolimits _{t\longrightarrow \infty }f(\phi _1(t-\varsigma +s_{n}))=f(\phi _1^1(t-\varsigma )).\)

By the same way, we have: \(\lim \nolimits _{t\longrightarrow \infty }f(\phi _1^1(t-\varsigma -s_{n}))=f(\phi _1(t-\varsigma )).\)

Then \(G_1(.) \in AA(\mathbb {R},\mathbb {R}^n).\)

Second, we prove that \(G_2(.)\in PC_0(\mathbb {R},\mathbb {R}^n)\).

It is clear that \(G_2(.)\in PC(\mathbb {R},\mathbb {R}^n)\), also we have:

$$\begin{aligned} G_2(t)& = f(\phi _1(t-\varsigma )+\phi _2(t-\varsigma ))-f(\phi _1(t-\varsigma ))\\ |G_2(t)|& = |f(\phi _1(t-\varsigma )+\phi _2(t-\varsigma ))-f(\phi _1(t-\varsigma ))|\\ & \le l^j_f|\phi _2(t-\varsigma )|, \end{aligned}$$

since \(\phi _2(.) \in PC_0(\mathbb {R},\mathbb {R}^n),\) we have \(\lim \nolimits _{t\longrightarrow \infty } |\phi _2(t-\varsigma )|=0,\) then \(G_2(.)\in PC_0(\mathbb {R},\mathbb {R}^n).\) The proof is completed. \(\square\)

Appendix 4: Proof of Lemma 4

Proof

Let \(\phi _{j}(.) \in AAA(\mathbb {R},\mathbb {R}^n),\) from Lemma 3 we obtain \(h_{j}(\phi _{j}(.) )\in AAA(\mathbb {R},\mathbb {R}^n).\)

Let \(h_{j}(\phi _{j}(.))=u_j(.)+v_j(.),\) where \(u_j (.)\in AA(\mathbb {R},\mathbb {R}^n)\) and \(v_j (.)\in PC_0(\mathbb {R},\mathbb {R}^n),\) then

$$\begin{aligned} \varPhi _{ij}(t)& = \int \limits _{-\infty }^{t} K_{ij}(t-s) h_{j}(\phi _{j}(s)) \,{\text{d}}s \\ & = \int \limits _{-\infty }^{t} K_{ij}(t-s) u_{j}(s) \,{\text{d}}s+ \int \limits _{-\infty }^{t} K_{ij}(t-s)v_{j}(s) \,{\text{d}}s \\ & = \varPhi _{ij}^1(t)+\varPhi _{ij}^2(t) \end{aligned}$$
(17)

First, let us show that \(\varPhi _{ij}^1(t) \in AA(\mathbb {R},\mathbb {R}^n).\)

For each sequence \((s'_n)\) there exists a subsequence \((s_n)\) such that \(\theta (t)= \lim \nolimits _{n\longrightarrow \infty } u_j(t+s_n)\) is well defined for every \(t \in \mathbb {R}\) and \(\theta (t-s_n)= \lim \nolimits _{n\longrightarrow \infty } u_j(t)\) is well defined for every \(t \in \mathbb {R}.\)

In addition, we have

$$\begin{aligned} \varPhi _{ij}^1(t+s_n)& = \int \limits _{-\infty }^{t+s_n} K_{ij}(t+s_n-s) u_{j}(s) \,{\text{d}}s\\ & = \int \limits _{-\infty }^{t} K_{ij}(t-s) u_{j}(s+s_n) \,{\text{d}}s \end{aligned}$$

One has \(\Vert K_{ij}(t-s) u_{j}(s+s_n)\Vert \le K^+ e^{-\nu ^K(t-s)}\Vert u_{j}(t)\Vert\) it follows that \(\int \nolimits _{-\infty }^{t} K_{ij}(t-s) u_{j}(s+s_n) \,{\text{d}}s\le \frac{K^+}{\nu ^K}\Vert u_{j}(t)\Vert .\)

Then using the Lebesgue-dominated convergence theorem, we obtain \(\lim \nolimits _{n\longrightarrow \infty } \varPhi _{ij}^1(t+s_n)=\int \nolimits _{-\infty }^{t} K_{ij}(t-s) \theta _j(s)\,{\text{d}}s.\)

Analogously, we get \(\varPhi _{ij}^1(t)=\lim \nolimits _{n\longrightarrow \infty } \int \nolimits _{-\infty }^{t-s_n} K_{ij}(t-s_n-s) \theta _j(s)\,{\text{d}}s\).

Second, let us show that \(\varPhi _{ij}^2(t) \in PC_0(\mathbb {R},\mathbb {R}^n).\)

It is not difficult to see that \(\varPhi _{ij}^2(t) \in PC(\mathbb {R},\mathbb {R}^n).\) We have

$$\begin{aligned} \varPhi _{ij}^2(t) & = \int \limits _{-\infty }^{t} K_{ij}(t-s)v_{j}(s) \,{\text{d}}s\\ & = \int \limits _{-\infty }^{0} K_{ij}(t-s)v_{j}(s) \,{\text{d}}s+\int \limits _{0}^{t} K_{ij}(t-s)v_{j}(s) \,{\text{d}}s\\ \end{aligned}$$

since \(v_j \in PC_0(\mathbb {R},\mathbb {R}^n),\) for every \(\varepsilon >0\) there exist a constant \(N>0\) such that \(\Vert v_j (s)\Vert \le \varepsilon\) for all \(s\ge N\) and for all \(t\ge 2N\), we obtain

$$\begin{aligned}&\Vert \varPhi _{ij}^2(t) \Vert \\ &\quad =\Vert \int \limits _{-\infty }^{0} K_{ij}(t-s)v_{j}(s) \,{\text{d}}s +\int \limits _{0}^{\frac{t}{2}} K_{ij}(t-s)v_{j}(s) \,{\text{d}}s \\ &\qquad +\int \limits _{\frac{t}{2}}^{t} K_{ij}(t-s)v_{j}(s) \,{\text{d}}s\Vert \\ &\quad \le \int \limits _{-\infty }^{0}K^+e^{-\nu ^K(t-s)}\Vert v_j(s)\Vert \,{\text{d}}s+\int \limits _{0}^{\frac{t}{2}}K^+e^{-\nu ^K(t-s)}\Vert v_j(s)\Vert \,{\text{d}}s \\ &\qquad +\int \limits _{\frac{t}{2}}^{t}K^+e^{-\nu ^K(t-s)}\Vert v_j(s)\Vert \,{\text{d}}s \\ &\quad \le \frac{K^+}{\nu ^K}e^{-\nu ^K t}\Vert v_j\Vert _\infty + \frac{K^+}{\nu ^K}e^{-\frac{\nu ^K}{2} t}\Vert v_j\Vert _\infty +\frac{K^+}{\nu ^K}\varepsilon . \end{aligned}$$
(18)

where \(\Vert v_j\Vert _\infty = \sup \nolimits _{s \in \mathbb {R}}\Vert v_j(s)\Vert .\)

Consequently \(\varPhi _{ij}^2(.) \in PC_0(\mathbb {R},\mathbb {R}^n).\) The proof is completed. \(\square\)

Appendix 5: Proof of Lemma 6

Proof

Step 1 Noting \((\varPsi _{U_{\phi }})_{i}(s):=\int \nolimits _{-\infty }^{t} W(t,s)(U_\phi )_i(s)\,{\text{d}}s.\)

First, by Lemmas 1–4, the function \((U_{\phi })_{i}\) belongs to \(AAA(\mathbb {R},\mathbb {R}).\) This ensures the existence of two functions \(\varLambda _{i}\) in \(AA(\mathbb {R},\mathbb {R})\) and \(\varOmega _{i}\) in \(PC_0(\mathbb {R},\mathbb {R})\) such that for all \(1\le i,j\le n,\) it can be expressed as \((U_{\phi })_{i}(.)=\varLambda _{i}(.)+\varOmega _{i}(.).\)

One can write \(\varPsi\) as follows:

\((\varPsi _{U_{\phi }})_i(t):=\int \limits _{-\infty }^{t} W(t,s)\varLambda _{i}(s)\,{\text{d}}s+\int \limits _{-\infty }^{t} W(t,s) \varOmega _{i}(s)\,{\text{d}}s.\)

Let us study the almost automorphicity of

\((\varPsi \varLambda _{i}): t\mapsto \int \limits _{-\infty }^{t} W(t,s)\varLambda _{i}(s) \,{\text{d}}s.\)

Let \(\left( s_{n}^{\prime }\right) _{n \in \mathbb {N}}\) be a sequence of real numbers. By hypothesis we can extract a subsequence \((s_{n})_{n \in \mathbb {N}}\) of \(\left( s_{n}^{\prime }\right) _{n \in \mathbb {N}}\) such that: \(\lim \nolimits _{n\rightarrow +\infty }\varLambda _{i}\left( t+s_{n}\right) =\varLambda _{i}^{1}\left( t\right) ,\)\(\forall \; t\in \mathbb {R},\)

and \(\lim \nolimits _{n\rightarrow +\infty }\varLambda _{i}^{1}\left( t-s_{n}\right) =\varLambda _{i}\left( t\right) ,\)\(\forall \; t\in \mathbb {R}.\)

Let \((\varPsi ^1\varLambda _{i})(t)= \int \nolimits _{-\infty }^{t} W(t,s)\varLambda _{i}^1(s) \,{\text{d}}s,\) it follows that

$$\begin{aligned}&|(\varPsi \varLambda _{i})(t+s_n)-(\varPsi ^1\varLambda _{i})(t)| \\ &\quad =|\int \limits _{-\infty }^{t+s_n} W(t+s_n,s)\varLambda _{i}(s) \,{\text{d}}s-\int \limits _{-\infty }^{t} W(t,s)\varLambda _{i}^1(s) \,{\text{d}}s | \\ &\quad \le |\int \limits _{-\infty }^{t} W(t,s)\varLambda _{i}(t+s_n) \,{\text{d}}s -\int \limits _{-\infty }^{t} W(t,s)\varLambda _{i}^1(s) \,{\text{d}}s | \\ &\quad \le \int \limits _{-\infty }^{t}| W(t,s)||\varLambda _{i}(t+s_n)-\varLambda _{i}^1(s)|\,{\text{d}}s \\ &\quad \le \int \limits _{-\infty }^{t} K e^{-\delta (t-s)}|\varLambda _{i}(t+s_n)-\varLambda _{i}^1(s)|\,{\text{d}}s. \end{aligned}$$
(19)

Based on the Lebesgue-dominated convergence theorem, we have for all \(t \in \mathbb {R}\)

$$\begin{aligned} \lim \nolimits _{n\rightarrow +\infty }(\varPsi \varLambda _{i})(t+s_n)=(\varPsi ^1\varLambda _{i})(t). \end{aligned}$$

By a similar way, we prove that

$$\begin{aligned} \lim \nolimits _{n\rightarrow +\infty }(\varPsi ^1\varLambda _{i})(t-s_n)=(\varPsi \varLambda _{i})(t), \end{aligned}$$

which implies that \((\varPsi \varLambda _{i}) \in AA(\mathbb {R},\mathbb {R}^{n}).\)

Second, we turn our attention to \((\varPsi \varOmega _{i}): t\mapsto \int \limits _{-\infty }^{t} W(t,s)\varOmega _{i}(s) \,{\text{d}}s.\) It is easy to prove that \((\varPsi \varOmega _{i})\in PC(\mathbb {R},\mathbb {R}).\)

We have \(\lim \nolimits _{t\rightarrow +\infty } \int \nolimits _{-\infty }^{t} W(t,s) \varOmega _{i}(s)\,{\text{d}}s=0.\) Since \(\varOmega _{i} \in PC_0(\mathbb {R},\mathbb {R}),\) then \(\lim \nolimits _{t\rightarrow +\infty } |\int \nolimits _{-\infty }^{t} W(t,s) \varOmega _{i}(s)|\,{\text{d}}s=0.\)

By the Lebesgue-dominated convergence theorem, we have

\(\lim \limits _{t\rightarrow +\infty } \int \limits _{-\infty }^{t} W(t,s) \varOmega _{i}(s)\,{\text{d}}s=0.\)

Hence, the function \(\varPsi \varOmega _{i}\) belongs to \(PC_0(\mathbb {R},\mathbb {R}).\)

Step 2 Proving that \(\sum \limits _{t_k<t} W(t,t_k)(I_k(\phi _i(t_k))+\omega _k)\) belongs to \(AAA(\mathbb {R},\mathbb {R}).\)

From the assumption (H7), \(I_k(\phi _i(t_k))\in AAA(\mathbb {R},\mathbb {R}).\) By definition, it can be expressed as

$$\begin{aligned} I_k(\phi _i(t_k))=I_{k1}(\phi _i(t_k))+I_{k2}(\phi _i(t_k)), \end{aligned}$$

such that \(I_{k1}(\phi _i(t_k)) \in AA(\mathbb {R},\mathbb {R}),\)\(I_{k2}(\phi _i(t_k))=0.\) Then:

$$\begin{aligned}&\sum \limits _{t_k<t} W(t,t_k)(I_k(\phi _i(t_k))+\omega _k)\\ &\quad =\sum \limits _{t_k<t} W(t,t_k)(I_{k1}(\phi _i(t_k)) +\omega _k)+\sum \limits _{t_k<t} W(t,t_k)(I_{k2}(\phi _i(t_k))). \end{aligned}$$

For every real sequence \((t_{n})_{n\in \mathbb {N}}\), there exists a subsequence \((t_{n_{k}})_{n_{k} \in \mathbb {N}}\) such that \(\lim \limits _{n_k\rightarrow +\infty }I_{k1}(\phi _i(t_k+t_{n_{k}}))=I_{k1}^1(\phi _i(t_k))\) and

\(\lim \limits _{n_k\rightarrow +\infty }I_{k1}^1(\phi _i(t_k-t_{n_{k}}))=I_{k1}(\phi _i(t_k)).\)

Now, we have

$$\begin{aligned}&\sum \limits _{t_k<t+t_{n_{k}}}W (t+t_{n_{k}},t_k)(I_{k1}(\phi _i(t_k)+\omega _k)\\ &\quad =\sum \limits _{t_k<t}W (t+t_{n_{k}},t_k+t_{n_{k}})(I_{k1}(\phi _i(t_k+t_{n_{k}}))+\omega _k), \end{aligned}$$

then

$$\begin{aligned}&\lim \limits _{n_k\rightarrow +\infty } \sum \limits _{t_k<t}W (t+t_{n_{k}},t_k+t_{n_{k}})(I_{k1}(\phi _i(t_k+t_{n_{k}}))+\omega _k) \\ &\quad =\sum \limits _{t_k < t} W(t,t_k)(I_{k1}^1( \phi _i(t_k ))+\omega _k) \end{aligned}$$
(20)

Similarly

$$\begin{aligned}&\sum \limits _{t_k<t-t_{n_{k}}}W (t-t_{n_{k}},t_k)(I_{k1}^1(\phi _i(t_k)+\omega _k)\\ &\quad = \sum \limits _{t_k<t}W (t-t_{n_{k}},t_k-t_{n_{k}})(I_{k1}^1(\phi _i(t_k-t_{n_{k}}))+\omega _k), \end{aligned}$$

then

$$\begin{aligned}&\lim \limits _{n_k\rightarrow +\infty }\sum \limits _{t_k<t}W (t-t_{n_{k}},t_k-t_{n_{k}})(I_{k1}^1(\phi _i(t_k-t_{n_{k}}))+\omega _k) \\ &\quad =\sum \limits _{t_k < t} W(t,t_k)(I_{k1}( \phi _i(t_k ))+\omega _k). \end{aligned}$$
(21)

Then, \(\sum \limits _{t_k<t} W(t,t_k)(I_{k1}(\phi _i(t_k))+\omega _k) \in AA(\mathbb {R},\mathbb {R}).\)

On the other hand,

$$\begin{aligned} \lim \limits _{t\rightarrow +\infty }\sum \limits _{t_k< t} |W(t,t_k)||I_{k2}(\phi _i(t_k))| & = \lim \limits _{t\rightarrow +\infty }|I_{k2}|\sum \limits _{t_k < t} |W(t,t_k)|=0, \end{aligned}$$

as \(\sum \nolimits _{t_k< t} |W(t,t_k)|<\infty .\)

By Steps 1 and 2 we have:

$$\begin{aligned} \varTheta _\phi (t):= \int \limits _{-\infty }^{t} W(t,s)(U_\phi )_i(s)\,{\text{d}}s+ \sum \limits _{t_k<t} W(t,t_k)(I_k(\phi _i(t_k))+\omega _k) \end{aligned}$$

maps \(AAA(\mathbb {R},\mathbb {R})\) into itself. \(\square\)

Appendix 6: Proof of the Theorem 1

Proof

Let us calculate the norm of \(\phi _0\). One has

$$\begin{aligned}&\Vert \phi _{0}\Vert \\ &\quad =\sup _{t \in \mathbb {R}}\bigg \{ \max _{ 1 \le i\le n}\big \{ \big |\int \limits _{-\infty }^{t}|W(t,s)||\gamma _{i}(s)|\,{\text{d}}s +\sum \limits _{t_k< t} |W(t,t_k)||\omega _k|\bigg \} \\ &\quad \le \sup _{t \in \mathbb {R}} \bigg \{\max _{ 1 \le i\le n}\big \{\int \limits _{-\infty }^{t}Ke^{-\delta (t-s)}\big |\gamma _{i}(s)\big |\,{\text{d}}s +\sum \limits _{t_k < t} Ke^{-\delta (t-t_k)}|\omega _k|\big \} \bigg \} \\ &\quad \le K \bar{\gamma }(\frac{1}{\delta }+\frac{1}{1-e^{-\delta }}) =\bar{R}, \end{aligned}$$
(22)

such that \(\bar{\gamma }\ge \max \bigg \{\max \limits _{1 \le i \le n}|\gamma _i(t)|, \max \limits _{1 \le k \le n} |\omega _k|\bigg \}.\)

After, \(\Vert \phi \Vert _{\infty }\le \Vert \phi -\phi _{0}\Vert +\Vert \phi _{0}\Vert \le \frac{r}{1-r}\bar{R}+\bar{R }=\frac{\bar{R}}{1-r}.\)

Set \(S^{*}=\bigg \{ \phi \in AAA(\mathbb {R},\mathbb {R}^{n}) ; \Vert \phi -\phi _{0}\Vert \le \frac{r}{1-r}\bar{R} \bigg \}.\)

Clearly, \(S^{*}\) is a closed convex subset of \(AAA(\mathbb {R},\mathbb {R}^{n}).\) Therefore, for any \(\phi \in S^{*}\) by using the estimate just obtained, we see that

$$\begin{aligned}&\Vert \varTheta _{\phi }-\phi _{0}\Vert \\ &\quad \le \sup _{t \in \mathbb {R}} \bigg \{\max _{1 \le i\le n}\int \limits _{-\infty }^{t}\bigg (|W(t,s)|\bigg [ \sum \limits _{j=1}^{n}|a_{ij}(s)||f_j(\phi _j(s-\varsigma _{j}))| \\ &\qquad + \sum \limits _{j=1}^{n} \sum \limits _{l=1}^{n}|b_{ijl}(s)||g_j(\phi _j(s-\sigma _{j}))||g_l(\phi _l(s-\upsilon _{l}))| \\ &\qquad +\sum \limits _{j=1}^{n} |d_{ij}(s)|\int \limits _{-\infty }^{s} |K_{ij}(s-m)|| h_{j}(\phi _{j}(m))|\,{\text{d}}m \\ &\qquad +\sum \limits _{j=1}^{n} \sum \limits _{l=1}^{n}|r_{ijl}(s)|\int \limits _{-\infty }^{s}|P_{ijl}(s-m)||k_{j}(\phi _{j}(m))|\,{\text{d}}m \\ &\qquad \times \int \limits _{-\infty }^{s}|Q_{ijl}(s-m)||k_{l}(\phi _{l}(m))|\,{\text{d}}m \bigg ]\,{\text{d}}s\bigg ) \\ &\qquad +\sum \limits _{t_k< t} |W(t,t_k)||\omega _k(\phi (t_k))|\bigg \} \\ &\quad \le \sup _{t \in \mathbb {R}} \bigg \{\max _{1 \le i\le n}\bigg (\int \limits _{-\infty }^{t}Ke^{-\delta (t-s)}\bigg [ \sum \limits _{j=1}^{n}a_{ij}^*|f_j(\phi _j(s-\varsigma _{j}))| \\ &\qquad + \sum \limits _{j=1}^{n} \sum \limits _{l=1}^{n}b_{ijl}^*|g_j(\phi _j(s-\sigma _{j}))||g_l(\phi _l(s-\upsilon _{l}))| \\ &\qquad +\sum \limits _{j=1}^{n} d_{ij}^* \int \limits _{-\infty }^{s} |K_{ij}(s-m)|| h_{j}(\phi _{j}(m))|\,{\text{d}}m \\ &\qquad +\sum \limits _{j=1}^{n} \sum \limits _{l=1}^{n}r_{ijl}^*\int \limits _{-\infty }^{s}|P_{ijl}(s-m)||k_{j}(\phi _{j}(m))|\,{\text{d}}m \\ &\qquad \times \int \limits _{-\infty }^{s}|Q_{ijl}(s-m)||k_{l}(\phi _{l}(m))|\,{\text{d}}m\bigg ]\,{\text{d}}s\bigg ) \\ &\qquad + \sum \limits _{t_k< t} Ke^{-\delta (t-s)} |\omega _k(\phi (t_k))|\bigg \} \\ &\quad \le \sup _{t \in \mathbb {R}} \bigg \{\max _{1 \le i\le n}\bigg (\int \limits _{-\infty }^{t}Ke^{-\delta (t-s)}\bigg [ \sum \limits _{j=1}^{n}a_{ij}^* l_f^j|\phi _j(s- \varsigma _{j})| \\ &\qquad + \sum \limits _{j=1}^{n} \sum \limits _{l=1}^{n}b_{ijl}^* l_g^j e^l|\phi _j(s-\sigma _{j})|+\sum \limits _{j=1}^{n} d_{ij}^* l_h^j \frac{K^+}{\nu ^K}|\phi _{j}(s)| \\ &\qquad +\sum \limits _{j=1}^{n} \sum \limits _{l=1}^{n}r_{ijl}^* \frac{P^+}{\nu ^P} \frac{Q^+}{\nu ^Q} l_k^j M^l|\phi _j(s)| \bigg ]\,{\text{d}}s\bigg ) \\ &\qquad +\sum \limits _{t_k< t} Ke^{-\delta (t-s)} L |(\phi (t_k))|\bigg \} \\ &\quad \le \sup _{t \in \mathbb {R}}\bigg \{\int \limits _{-\infty }^{t}Ke^{-\delta (t-s)}\max _{1 \le i\le n}\bigg [ \sum \limits _{j=1}^{n}a_{ij}^* l_f^j + \sum \limits _{j=1}^{n} \sum \limits _{l=1}^{n}b_{ijl}^* l_g^j e^l \\ &\qquad +\sum \limits _{j=1}^{n} d_{ij}^* l_h^j \frac{K^+}{\nu ^+}+\sum \limits _{j=1}^{n} \sum \limits _{l=1}^{n}r_{ijl}^* \frac{P^+}{\nu ^P} \frac{Q^+}{\nu ^Q} l_k^j M^l \bigg ]\,{\text{d}}s \\ &\qquad +\sum \limits _{t_k < t} Ke^{-\delta (t-s)} L \bigg \}\Vert \ \phi \Vert \\ &\quad \le \bigg \{ \frac{K}{\delta } \max _{1 \le i\le n}\bigg [\sum \limits _{j=1}^{n}a_{ij}^* l_f^j + \sum \limits _{j=1}^{n} \sum \limits _{l=1}^{n}b_{ijl}^* l_g^j e^l \\ &\qquad +\sum \limits _{j=1}^{n} d_{ij}^* l_h^j \frac{K^+}{\nu ^K} +\sum \limits _{j=1}^{n} \sum \limits _{l=1}^{n}r_{ijl}^* \frac{P^+}{\nu ^P} \frac{Q^+}{\nu ^Q} l_k^j M^l\bigg ] \\ &\qquad + \frac{K L}{1-e^{-\delta }} \bigg \}\Vert \ \phi \Vert =r\Vert \ \phi \Vert \end{aligned}$$
(23)

then, \(\varTheta _{\phi }\in S^{*}.\)

Now our aim is to prove that \(\varTheta\) is a contraction. For any \(\phi _{1},\phi _{2} \in S^{*},\) we have

$$\begin{aligned}&\Vert \varTheta _{\phi _{1}}-\varTheta _{\phi _{2}}\Vert \\ &\quad \le \sup _{t \in \mathbb {R}} \bigg \{\max _{1 \le i\le n}(\int \limits _{-\infty }^{t}|W(t,s)| |U_{\phi _{1}}(s)-U_{\phi _{2}}(s)|\,{\text{d}}s) \\ &\qquad +\sum \limits _{t_k< t}|W(t,t_k)||I_k(\phi _1(t_k))-I_k(\phi _2(t_k))|\bigg \} \\ &\quad \le \sup _{t \in \mathbb {R}} \bigg \{\max _{1 \le i\le n}\bigg (\int \limits _{-\infty }^{t}Ke^{-\delta (t-s)} \\ &\qquad \times \bigg [\sum \limits _{j=1}^{n}a_{ij}^* l_f^j\bigg |\phi _1(s-\varsigma _{j})-\phi _2(s-\varsigma _{j})\bigg | \\ &\qquad + \sum \limits _{j=1}^{n} \sum \limits _{l=1}^{n}b_{ijl}^*\bigg |g_j(\phi _1(s-\sigma _{j})) g_l(\phi _1(s-\sigma _{l})) \\ &\qquad -g_j(\phi _2(s-\sigma _{j})) g_l(\phi _1(s-\sigma _{l}) \\ &\qquad +g_j(\phi _2(s-\sigma _{j})) g_l(\phi _1(s-\sigma _{l}) \\ &\qquad -g_j(\phi _2(s-\sigma _{j})) g_l(\phi _2(s-\sigma _{l})\bigg | \\ &\qquad +\sum \limits _{j=1}^{n} d_{ij}^* l_h^j \frac{K^+}{\nu ^K}\bigg | \phi _{1}(s)-\phi _{2}(s)\bigg | \\ &\qquad + \sum \limits _{j=1}^{n} \sum \limits _{l=1}^{n}r_{ijl}^*\bigg |\int \limits _{-\infty }^{s}P_{ijl}(s-m)h_j(\phi _{1}(m))\,{\text{d}}m \\ &\qquad \times \int \limits _{-\infty }^{s}Q_{ijl}(s-m)k_l(\phi _{1}(m))\,{\text{d}}m \\ &\qquad -\int \limits _{-\infty }^{s}P_{ijl}(s-m)h_j(\phi _{2}(m))\,{\text{d}}m \\ &\qquad \times \int \limits _{-\infty }^{s}Q_{ijl}(s-m)k_l(\phi _{1}(m))\,{\text{d}}m \\ &\qquad +\int \limits _{-\infty }^{s}P_{ijl}(s-m)h_j(\phi _{2}(m))\,{\text{d}}m \\ &\qquad \times \int \limits _{-\infty }^{s}Q_{ijl}(s-m)k_l(\phi _{1}(m))\,{\text{d}}m \\ &\qquad -\int \limits _{-\infty }^{s}P_{ijl}(s-m)h_j(\phi _{2}(m))\,{\text{d}}m \\ &\qquad \times \int \limits _{-\infty }^{s}Q_{ijl}(s-m)k_l(\phi _{2}(m))\,{\text{d}}m\bigg |\bigg ]\,{\text{d}}s\bigg ) \\ &\qquad +\sum \limits _{t_k< t}Ke^{-\delta (t-s)}L\bigg |\phi _1(t_k)-\phi _2(t_k)\bigg |\bigg \} \\ &\quad \le \max _{1 \le i\le n}\bigg \{\int \limits _{-\infty }^{t}Ke^{-\delta (t-s)} \bigg [\sum \limits _{j=1}^{n}a_{ij}^* l_f^j \\ &\qquad + \sum \limits _{j=1}^{n} \sum \limits _{l=1}^{n}b_{ijl}^*(l_g^je^l+l_g^l e^j) +\sum \limits _{j=1}^{n} d_{ij}^* l_h^j \frac{K^+}{\nu ^K} \\ &\qquad + \sum \limits _{j=1}^{n} \sum \limits _{l=1}^{n}r_{ijl}^* \frac{P^+}{\nu ^P} \frac{Q^+}{\nu ^Q} (l_k^j M^l+l_k^l M^j)\bigg ]\,{\text{d}}s \\ &\qquad +\sum \limits _{t_k < t}Ke^{-\delta (t-s)}L\bigg \} ||\phi _1-\phi _2|| \\ &\quad \le \bigg \{ \frac{K}{\delta }\max _{1 \le i\le n}\bigg [\sum \limits _{j=1}^{n}a_{ij}^* l_f^j + \sum \limits _{j=1}^{n} \sum \limits _{l=1}^{n}b_{ijl}^*(l_g^je^l+l_g^l e^j) \\ &\qquad +\sum \limits _{j=1}^{n} d_{ij}^* l_h^j \frac{K^+}{\nu ^K} + \sum \limits _{j=1}^{n} \sum \limits _{l=1}^{n}r_{ijl}^* \frac{P^+}{\nu ^P} \frac{Q^+}{\nu ^Q} (l_k^j M^l+l_k^l M^j) \bigg ] \\ &\qquad +\frac{KL}{1-e^{-\delta }}\bigg \} ||\phi _1-\phi _2||=\bar{r}||\phi _1-\phi _2|| \end{aligned}$$
(24)

which prove that \(\varTheta\) is a contraction mapping.

By virtue of the Banach’s fixed-point theorem, \(\varTheta\) has a unique fixed point which corresponds to the solution of (3) in \(S^{*}.\)\(\square\)

Appendix 7: Proof of Theorem 2

Proof

First, using Lemma 6, \(\varTheta\) has a fixed point \(\phi .\) Let \(I^*_k(\phi (t_k))=I_k(\phi (t_k))+\omega _k.\)

Hence, for all \(t\in \mathbb {R},\) the fixed point \(\phi\) satisfies the following integral system:

\(\phi (t):= \int \limits _{-\infty }^{t} W(t,s)U_\phi (s)\,{\text{d}}s+ \sum \limits _{t_k<t} W(t,t_k)(I^*_k(\phi (t_k))).\)

Fixed \(t_0,\)\(t_0\ne t_i,\)\(i \in \mathbb {Z},\) we have

$$\begin{aligned} \phi (a)= \int \limits _{-\infty }^{a} W(a,s)U_\phi (s)\,{\text{d}}s+ \sum \limits _{t_k<a} W(a,t_k)(I^*_k(\phi (t_k))). \end{aligned}$$

Therefore

$$\begin{aligned} \phi (t) & = \int \limits _{-\infty }^{a} W(t,s)U_\phi (s)\,{\text{d}}s+ \sum \limits _{t_k<a} W(T,t_k)(I^*_k(\phi (t_k))) \\ &\quad + \int \limits _{a}^{t} W(t,s)U_\phi (s)\,{\text{d}}s+ \sum \limits _{a<t_k<t} W(t,t_k)(I^*_k(\phi (t_k))) \\ & = W(t,a)\phi (a)+\int \limits _{a}^{t} W(t,s)U_\phi (s)\,{\text{d}}s \\ &\quad+\sum \limits _{a<t_k<t} W(t,t_k)(I^*_k(\phi (t_k))). \end{aligned}$$
(25)

Second, by Theorem 1, we know that system (3) has an asymptotically almost automorphic solution u(t), by using integral form of system (3), if \(t>\sigma ,\;\; \sigma \ne t_k,\; \; k \in \mathbb {Z}\)

$$\begin{aligned} u (t) & = W(t,\sigma )u(\sigma )+\int \limits _{\sigma }^{t} W(t,s)U_u(s)\,{\text{d}}s \\ &\quad+\sum \limits _{\sigma<t_k<t} W(t,t_k)(I^*_k(u(t_k))), \end{aligned}$$
(26)

Let \(u(t)=u(t,\sigma ,\phi _1)\) and \(v(t)=v(t,\sigma ,\phi _2)\) be two solutions of (3), then

$$\begin{aligned} u (t) & = W(t,\sigma )u(\sigma )+\int \limits _{\sigma }^{t} W(t,s)U_u(s)\,{\text{d}}s\\ &\quad+\sum \limits _{\sigma<t_k<t} W(t,t_k)(I^*_k(u(t_k)))\\ v(t) & = W(t,\sigma )v(\sigma )+\int \limits _{\sigma }^{t} W(t,s)U_v(s)\,{\text{d}}s\\ &\quad+\sum \limits _{\sigma<t_k<t} W(t,t_k)(I^*_k(v(t_k))). \end{aligned}$$

Therefore,

$$\begin{aligned}&\Vert u(t)-v(t)\Vert \\ &\quad \le \Vert W(t,\sigma )[\phi _1-\phi _2]\Vert +\Vert \int \limits _{\sigma }^{t}W(t,s)[U_u(s)- U_v (s)]\,{\text{d}}s \Vert \\ &\qquad +\Vert \sum \limits _{\sigma<t_k<t} W(t,t_k) [I^*_k(u(t_k))-I^*_k(v(t_k))] \Vert \\ &\quad \le \Vert W(t,\sigma )[\phi _1-\phi _2]\Vert + \int \limits _{\sigma }^{t}\Vert W(t,s)\Vert \Vert U_u(s)- U_v (s)\Vert \,{\text{d}}s \\ &\qquad +\sum \limits _{\sigma<t_k<t}\Vert W(t,t_k)\Vert \Vert I^*_k(u(t_k))-I^*_k(v(t_k)) \Vert \\ &\quad \le Ke^{-\delta (t-\sigma )} \Vert \phi _1-\phi _2\Vert \\ &\qquad + \int \limits _{\sigma }^{t}Ke^{-\delta (t-\sigma )} \sum \limits _{i=1}^{n}\bigg [\sum \limits _{j=1}^{n}a_{ij}^*l_j^f+\sum \limits _{j=1}^{n}\sum \limits _{l=1}^{n} b_{ijl}^*( l_g^je^l+ l_g^le^j ) \\ &\qquad +\sum \limits _{j=1}^{n}d_{ij}^*\frac{K^+}{\nu ^K}l_h^j +\sum \limits _{j=1}^{n}\sum \limits _{l=1}^{n}r_{ijl}^* \frac{P^+}{\nu ^P} \frac{Q^+}{\nu ^Q} (l_k^j M^l+l_k^l M^j) \bigg ] \\ &\qquad \times \Vert u(s)- v(s)\Vert \,{\text{d}}s+\sum \limits _{\sigma<t_k<t} Ke^{-\delta (t-t_k)} L \Vert u(t_k)-v(t_k) \Vert \end{aligned}$$
(27)

Then

$$\begin{aligned}&e^{\delta t}\Vert u(t)-v(t)\Vert \\ &\quad \le Ke^{\delta \sigma } \Vert \phi _1-\phi _2\Vert + \int \limits _{\sigma }^{t}K \sum \limits _{i=1}^{n}\left[ \sum \limits _{j=1}^{n}a_{ij}^*l_j^f\right. \\ &\qquad +\sum \limits _{j=1}^{n}\sum \limits _{l=1}^{n} b_{ijl}^*\left( l_g^je^l+ l_g^le^j \right) +\sum \limits _{j=1}^{n}d_{ij}^*\frac{K^+}{\nu ^K}l_h^j \\ &\left. \qquad +\sum \limits _{j=1}^{n}\sum \limits _{l=1}^{n}r_{ijl}^* \frac{P^+}{\nu ^P} \frac{Q^+}{\nu ^Q} \left( l_k^j M^l+l_k^l M^j\right) \right] e^{\delta s} \Vert u(s)- v(s)\Vert \,{\text{d}}s \\ &\qquad +\sum \limits _{\sigma<t_k<t} Ke^{\delta t_k} L \Vert u(t_k)-v(t_k) \Vert \end{aligned}$$
(28)

Let \(y(t)=e^{\delta t}\Vert u(t)-v(t)\Vert ,\) Eq. (28) can be rewritten in the following form:

$$\begin{aligned} y(t) & \le K y(\sigma )+ \int \limits _{\sigma }^{t}K \sum \limits _{i=1}^{n}\left[ \sum \limits _{j=1}^{n}a_{ij}^*l_j^f\right. \\ &+\sum \limits _{j=1}^{n}\sum \limits _{l=1}^{n} b_{ijl}^*\left( l_g^je^l+ l_g^le^j\right) +\sum \limits _{j=1}^{n}d_{ij}^*\frac{K^+}{\nu ^K}l_h^j \\ &\left. +\sum \limits _{j=1}^{n}\sum \limits _{l=1}^{n}r_{ijl}^* \frac{P^+}{\nu ^P} \frac{Q^+}{\nu ^Q} \left( l_k^j M^l+l_k^l M^j\right) \right] y(s)\,{\text{d}}s \\ &+\sum \limits _{\sigma<t_k<t} K L \; y(t_k). \end{aligned}$$
(29)

By the generalized Gronwall–Bellman inequality, we have

$$\begin{aligned} y(t) & \le K y(\sigma ) \prod _{\sigma<t_k<t}(1+KN_1) e^{ \int \limits _{\sigma }^{t} KN_2\,{\text{d}}s } \\ & = K y(\sigma ) \prod _{\sigma<t_k<t}(1+KN_1) e^{KN_2(t-\sigma )} \end{aligned}$$
(30)
$$\begin{aligned} N_1 & = KL,\;N_2=\sum \limits _{i=1}^{n}\left[ \sum \limits _{j=1}^{n}a_{ij}^*l_j^f\right. \\ &+\sum \limits _{j=1}^{n}\sum \limits _{l=1}^{n} b_{ijl}^*\left( l_g^je^l+ l_g^le^j \right) +\sum \limits _{j=1}^{n}d_{ij}^*\frac{K^+}{\nu ^K}l_h^j \\ &\left. + \sum \limits _{j=1}^{n}\sum \limits _{l=1}^{n}r_{ijl}^* \frac{P^+}{\nu ^P} \frac{Q^+}{\nu ^Q} \left( l_k^j M^l+l_k^l M^j\right) \right] . \end{aligned}$$
(31)

Since \(\vartheta =\inf \nolimits _{k\in \mathbb {Z}}(t_{k+1}-t_k)>0\), we have

$$y(t)\le Ky(\sigma )(1+KN_1)^{\frac{t-\sigma }{\vartheta }}e^{KN_2(t-\sigma )}= Ky(\sigma )e^{\zeta (t-\sigma )},$$
(32)
$$\begin{aligned} \zeta & = \frac{\ln (1+KL)}{\vartheta }+K\sum \limits _{i=1}^{n}\left[ \sum \limits _{j=1}^{n}a_{ij}^*l_j^f\right. \\ &+\sum \limits _{j=1}^{n}\sum \limits _{l=1}^{n} b_{ijl}^*\left( l_g^je^l+ l_g^le^j\right) \sum \limits _{j=1}^{n}d_{ij}^*\frac{K^+}{\nu ^K}l_h^j \\ &\left. + \sum \limits _{j=1}^{n}\sum \limits _{l=1}^{n}r_{ijl}^* \frac{P^+}{\nu ^P} \frac{Q^+}{\nu ^Q} (l_k^j M^l+l_k^l M^j)\right] . \end{aligned}$$
(33)

That is \(\Vert u(t)-v(t)\Vert \le K\Vert \phi _1-\phi _2\Vert e^{(\zeta -\delta )(t-\sigma )}.\)

Since \((\zeta -\delta )<0,\) then system (3) has an exponential stable asymptotically almost automorphic solution. This completes the proof. \(\square\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aouiti, C., Dridi, F. Piecewise asymptotically almost automorphic solutions for impulsive non-autonomous high-order Hopfield neural networks with mixed delays. Neural Comput & Applic 31, 5527–5545 (2019). https://doi.org/10.1007/s00521-018-3378-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-018-3378-4

Keywords

Mathematics Subject Classification

Navigation