Skip to main content
Log in

Predicting river daily flow using wavelet-artificial neural networks based on regression analyses in comparison with artificial neural networks and support vector machine models

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This study investigates the ability of wavelet-artificial neural networks (WANN) for the prediction of short-term daily river flow. The WANN model is improved by conjunction of two methods, discrete wavelet transform and artificial neural networks (ANN) based on regression analyses, respectively. The proposed WANN models are applied to the daily flow data of Vanyar station, on the Ajichai River in the northwest region of Iran, and compared with the ANN and support vector machine (SVM) techniques. Mean square error (MSE), mean absolute error (MAE) and correlation coefficient (R) statistics are used for evaluating precision of the WANN, ANN and SVM models. Comparison results demonstrate that the WANN model performs better than the ANN and SVM models in short-term (1-, 2- and 3-day ahead) daily river flow prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

x(t):

Signal

t :

Integer time stages

j :

Integers that control the scale

k :

Integers that control the time

W j,k :

Wavelet coefficient

s:

Scale parameter

τ :

Time parameter

C p :

Mallows’ coefficient

i :

ith iteration

η :

Learning rate

θ :

Momentum value

E :

The sum of squared errors between observed and predicted data

ξ k :

Slack variables

ε :

Insensitivity loss function

C :

Positive trade-off factor

K :

Kernel function

n :

Number of support vectors

σ :

SVM model parameter

X mean :

Overall mean

S x :

Standard deviation

C sx :

Skewness

X min :

Minimum value

X max :

Maximum value

Q t :

Observed flow

Q min :

Minimum flow

Q max :

Maximum flow

Z i :

Normalized flow

References

  1. Adamowski J, Sun K (2010) Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds. J Hydrol 390:85–91

    Article  Google Scholar 

  2. Beale MH, Hagan MT, Demuth MH (2010) Neural network toolbox 7 user’s guide. Math Works Inc, Natick

    Google Scholar 

  3. Belayneh A, Adamowski J (2012) Standard precipitation index drought forecasting using neural networks, wavelet neural networks, and support vector regression. Appl Comput Intell Soft Comput. doi:10.1155/2012/794061

    Google Scholar 

  4. Chou CM, Wang RY (2002) On-line estimation of unit hydrographs using the wavelet-based LMS algorithm. Hydrol Sci J 47(5):721–738

    Article  Google Scholar 

  5. Cimen M (2008) Estimation of daily suspended sediments using support vector machines. Hydrol Sci J 53(3):656–666

    Article  Google Scholar 

  6. Cimen M, Kisi O (2009) Comparison of two different data-driven techniques in modeling lake level fluctuations in Turkey. J Hydrol 378:253–262

    Article  Google Scholar 

  7. Dawson CW, Wilby RL (2001) Hydrological modelling using artificial neural networks. Prog Phys Geogr 25(1):80–108

    Article  Google Scholar 

  8. Deswal S, Pal M (2008) Artificial neural network based modeling of evaporation losses in reservoirs. World Acad Sci Eng Technol 39:279–283

    Google Scholar 

  9. Dolling OR, Varas EA (2002) Artificial neural networks for streamflow prediction. J Hydraul Res 40(5):547–554

    Article  Google Scholar 

  10. Kalteh AM (2013) Monthly river flow forecasting using artificial neural network and support vector regression models coupled with wavelet transform. Comput Geosci 54:1–8

    Article  Google Scholar 

  11. Kim TW, Valdes JB (2003) Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks. J Hydrol Eng 8(6):319–328

    Article  Google Scholar 

  12. Kisi O (2008) Stream flow forecasting using neuro-wavelet technique. Hydrol Process 22(20):4142–4152

    Article  Google Scholar 

  13. Kisi O, Cimen M (2009) Evapotranspiration modelling using support vector machines. Hydrol Sci J 54(5):918–928

    Article  Google Scholar 

  14. Kisi O, Cimen MA (2011) Wavelet-support vector machine conjunction model for monthly streamflow forecasting. J Hydrol 399:132–140

    Article  Google Scholar 

  15. Kucuk M, Agiralioglu N (2006) Wavelet regression techniques for streamflow predictions. J Appl Stat 33(9):943–960

    Article  MathSciNet  MATH  Google Scholar 

  16. Kuchment LS, Demidov VN, Naden PS, Cooper DM, Broadhurst P (1996) Rainfall–runoff modelling of the Ouse basin, North Yorkshire: an application of a physically based distributed model. J Hydrol 181(1–4):323–342

    Article  Google Scholar 

  17. MacKay DJC (1992) A practical Bayesian framework for back propagation networks. Neural Comput 4:448–472

    Article  Google Scholar 

  18. Maier HR, Dandy GC (2000) Neural networks for the prediction and forecasting of water resources variables: are view of modeling issues and applications. Environ Model Softw 15:101–124

    Article  Google Scholar 

  19. Maier HR, Jain A, Dandy DC, Sudheer KP (2010) Methods used for the development of neural networks for the prediction of water resource variables in rivers system: current status and future directions. Environ Model Softw 25:891–909

    Article  Google Scholar 

  20. Mallat SG (1989) A theory for multi resolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal 11(7):674–693

    Article  MATH  Google Scholar 

  21. Mallows CL (1973) Some comments on C p. Technometrics 15(4):661–675

    MATH  Google Scholar 

  22. Nourani V, Alami MT, Aminfar MH (2009) A combined neural-wavelet model for prediction of Ligvanchai watershed precipitation. Eng Appl Artif Intell 22(3):466–472

    Article  Google Scholar 

  23. Nourani V, Kisi O, Komasi M (2011) Two hybrid artificial intelligence approaches for modeling rainfall–runoff process. J Hydrol 402:41–59

    Article  Google Scholar 

  24. Nourani V, Hosseini Baghanam A, Adamowski J, Gebremichael M (2013) Using self-organizing maps and wavelet transforms for space–time pre-processing of satellite precipitation and runoff data in neural network based rainfall–runoff modeling. J Hydrol 476:228–243

    Article  Google Scholar 

  25. Nourani N, Hosseini Baghanam A, Adamowski A, Kisi O (2014) Applications of hybrid wavelet–artificial intelligence models in hydrology: a review. J Hydrol 514:358–377

    Article  Google Scholar 

  26. Okkan U, Serbes ZA (2013) The combined use of wavelet transform and black box models in reservoir inflow modeling. J Hydrol Hydromech 61(2):112–119

    Article  Google Scholar 

  27. Platt JC (1999) Fast training of support vector machines using sequential minimal optimization. In: Schölkopf B, Burges CJC, Smolar AJ (eds) Advances in kernel methods—support vector learning. MIT Press, Cambridge

    Google Scholar 

  28. Radhika Y, Shashi M (2009) Atmospheric temperature prediction using support vector machines. Int J Comput Theory Eng 1(1):55–58

    Article  Google Scholar 

  29. Rajaee T, Nourani V, Mohammad ZK, Kisi O (2011) River suspended sediment load prediction: application of ANN and wavelet conjunction model. J Hydrol Eng 16(8):613–627

    Article  Google Scholar 

  30. Rumelhart DE, McClelland JL, The PDP Research Group (1986) Parallel distributed processing: explorations in the micro structure of cognition. MIT Press, Cambridge

    Google Scholar 

  31. Seo Y, Kim S, Kisi O, Singh VP (2014) Daily water level forecasting using wavelet decomposition and artificial intelligence techniques. J Hydrol 520:224–243

    Article  Google Scholar 

  32. Seo Y, Kim S, Singh VP (2015) Multistep-ahead flood forecasting using wavelet and data-driven methods. KSCE J Civil Eng 19(2):401–417

    Article  Google Scholar 

  33. Shafaei M, Kisi O (2016) Lake level forecasting using wavelet-SVR, wavelet-ANFIS and wavelet-ARMA conjunction models. Water Resour Manag 30(1):79–97. doi:10.1007/s11269-015-1147-z

    Article  Google Scholar 

  34. Shiri J, Kisi O, Yoon H, Lee K, Nazemi AH (2013) Predicting ground water level fluctuations with meteorological effect implications—a comparative study among soft computing techniques. Comput Geosci 56:32–44

    Article  Google Scholar 

  35. Singh KK, Pal M, Singh VP (2010) Estimation of mean annual flood in Indian catchments using back propagation neural network and M5 model tree. Water Resour Manag 24:2007–2019

    Article  Google Scholar 

  36. VapnikV N (1995) The nature of statistical learning theory. Springer, New York

    Book  Google Scholar 

  37. Vapnik VN (1998) Statistical learning theory. Wiley, New York

    MATH  Google Scholar 

  38. Wang W, Ding J (2003) Wavelet network model and its application to the prediction of hydrology. Nat Sci 1(1):67–71

    Google Scholar 

  39. Wang W, Van Gelder PHAJM, Vrijling JK, Ma J (2006) Forecasting daily stream flow using hybrid ANN models. J Hydrol 32:383–399

    Article  Google Scholar 

  40. Wang W, Jin J, Li Y (2009) Prediction of inflow at three Gorges Dam in Yangtze River with wavelet network model. Water Resour Manag 23:2791–2803

    Article  Google Scholar 

  41. Wei S, Song J, Khan NI (2012) Simulating and predicting river discharge time series using a wavelet-neural network hybrid modelling approach. Hydrol Process 26(2):281–296

    Article  Google Scholar 

  42. Zhou HC, Peng Y, Liang GH (2008) The research of monthly discharge predictor corrector model based on wavelet decomposition. Water Resour Manage 22:217–227

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Shafaei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shafaei, M., Kisi, O. Predicting river daily flow using wavelet-artificial neural networks based on regression analyses in comparison with artificial neural networks and support vector machine models. Neural Comput & Applic 28 (Suppl 1), 15–28 (2017). https://doi.org/10.1007/s00521-016-2293-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2293-9

Keywords

Navigation