Skip to main content

Advertisement

Log in

Solution of non-convex economic load dispatch problem for small-scale power systems using ant lion optimizer

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Ant lion optimizer (ALO) is a newly developed population-based search algorithm inspired by hunting mechanism of antlions and based on five steps of hunting the ants, i.e., the random walk of ants, building traps, entrapment of ants in traps, catching preys and re-building traps. This paper presents the application of ALO algorithm for the solution of non-convex and dynamic economic load dispatch problem of electric power system. The performance of ALO algorithm is tested for economic load dispatch problem of four IEEE benchmarks of small-scale power systems, and the results are verified by a comparative study with lambda iteration method, particle swarm optimization algorithm, genetic algorithm, artificial bee colony, evolutionary programming and Grey Wolf optimizer (GWO). Comparative results show that the performance of ant lion optimizer algorithm is better than recently developed GWO algorithm and other well-known heuristics and meta-heuristics search algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm intelligence: from natural to artificial systems. OUP, New York

    MATH  Google Scholar 

  2. Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization. Comput Intell Mag IEEE 1:28–39

    Article  Google Scholar 

  3. Kennedy J, Eberhart R (1995) “Particle swarm optimization,” in neural networks, 1995. In: Proceedings, IEEE international conference on, 1995, pp 1942–1948

  4. Kirkpatrick S, Gelatt CD Jr, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671–680

    Article  MathSciNet  MATH  Google Scholar 

  5. Webster B, Bernhard PJ (2003) A local search optimization algorithm based on natural principles of gravitation. In: Proceedings of the 2003 international conference on information and knowledge engineering (IKE’03), Las Vegas, Nevada, USA, 2003, pp 255–261

  6. Erol OK, Eksin I (2006) A new optimization method: big bang–big crunch. Adv Eng Softw 37:106–111

    Article  Google Scholar 

  7. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179:2232–2248

    Article  MATH  Google Scholar 

  8. Moghaddam FF, Moghaddam RF, Cheriet M (2012) Curved space optimization: a random search based on general relativity theory. arXiv:1208.2214

  9. Kaveh A, Talatahari S (2010) A novel heuristic optimization method: charged system search. Acta Mech 213:267–289

    Article  MATH  Google Scholar 

  10. Formato RA (2007) Central force optimization: a new metaheuristic with applications in applied electromagnetics. Prog Electromag Res 77:425–491

    Article  Google Scholar 

  11. Alatas B (2011) ACROA: artificial chemical reaction optimization algorithm for global optimization. Expert Syst Appl 38:13170–13180

    Article  Google Scholar 

  12. Hatamlou A (2012) Black hole: a new heuristic optimization approach for data clustering. Inform Sci

  13. Kaveh A, Khayatazad M (2012) A new meta-heuristic method: Ray Optimization. Comput Struct 112:283–294

    Article  Google Scholar 

  14. Du H, Wu X, Zhuang J (2006) Small-world optimization algorithm for function optimization. In: Advances in natural computation. Springer, pp 264–273

  15. Shah-Hosseini H (2011) Principal components analysis by the galaxy-based search algorithm: a novel metaheuristic for continuous optimisation. Int J Comput Sci Eng 6:132–140

    Article  Google Scholar 

  16. Xue-hui L, Ye Y, Xia L (2008) Solving TSP with shuffled frog-leaping algorithm. In: IEEE proceedings of 8th international conference on intelligent systems design and applications (ISDA’08), Kaohsiung, vol 3, 26-28 Nov 2008, pp 228–232

  17. Fang H, Kim J, Jang J (2011) A fast snake algorithm for tracking multiple-objects. J Inform Process Syst 7(3):519–530

    Article  Google Scholar 

  18. Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12(6):702–713

    Article  Google Scholar 

  19. Abbass HA (2001) MBO: marriage in honey bees optimization-A haplometrosis polygynous swarming approach. In: Evolutionary computation, 2001. Proceedings of the 2001 congress on, 2001, pp 207–214

  20. Li X (2003) A new intelligent optimization-artificial fish swarm algorithm. Doctor thesis, Zhejiang University of Zhejiang, China

  21. Roth M (2005) Termite: a swarm intelligent routing algorithm for mobile wireless ad-hoc networks

  22. Pinto PC, Runkler TA, Sousa JM (2007) Wasp swarm algorithm for dynamic MAX-SAT problems. In: Adaptive and natural computing algorithms. Springer, pp 350–357

  23. Mucherino A, Seref O (2007) Monkey search: a novel metaheuristic search for global optimization. In: AIP conference proceedings, p 162

  24. Lu X, Zhou Y (2008) A novel global convergence algorithm: bee collecting pollen algorithm. In: Advanced intelligent computing theories and applications. With aspects of artificial intelligence. Springer, pp 518–525

  25. Yang X-S, Deb S (2009) Cuckoo search via Lévy flights. In: Nature & biologically inspired computing, 2009. NaBIC 2009. World Congress on, pp 210–214

  26. Shiqin Y, Jianjun J, Guangxing Y (2009) A Dolphin partner optimization. In: Intelligent systems, GCIS’09. WRI Global Congress on 124–128

  27. Yang X-S (2010) Firefly algorithm, stochastic test functions and design optimisation. Int J Bio-Inspired Comput 2:78–84

    Article  Google Scholar 

  28. Gandomi AH, Alavi AH (2012) Krill Herd: a new bio-inspired optimization algorithm. Communications in nonlinear science and numerical simulation

  29. Pan W-T (2012) A new fruit fly optimization algorithm: taking the financial distress model as an example. Knowl-Based Syst 26:69–74

    Article  Google Scholar 

  30. Khokhar B, Parmar KPS, Dahiya S (2012) Application of biogeography-based optimization for economic dispatch problems. Int J Comput Appl (0975 – 888) 47(13):25–30

  31. Sinha, Nidul, R. Chakrabarti, and P. K. Chattopadhyay. “Evolutionary programming techniques for economic load dispatch.” Evolutionary Computation, IEEE Transactions on 7, no. 1 (2003): 83-94

  32. Gaing Zwe-Lee (2003) Particle swarm optimization to solving the economic dispatch considering the generator constraints. Power Syst IEEE Trans 18(3):1187–1195

    Article  Google Scholar 

  33. Chiang Chao-Lung (2005) Improved genetic algorithm for power economic dispatch of units with valve-point effects and multiple fuels. Power Syst IEEE Trans 20(4):1690–1699

    Article  MathSciNet  Google Scholar 

  34. Devi, Lakshmi A, Vamsi Krishna O (2008) Combined economic and emission dispatch using evolutionary algorithms-A case study. ARPN J Eng Appl Sci 3(6): 28–35

  35. Kumar, Sathish K, Rajaram R, Tamilselvan V, Shanmugasundaram V, Naveen S, Mohamed Nowfal Hariharan IG, Jayabarathi T (2009) Economic dispatch with valve point effect using various PSO techniques. 2(6):130–135

  36. Singh L, Dhillon JS (2009) Cardinal priority ranking based decision making for economic-emission dispatch problem. Int J Eng Sci Technol 1(1):272–282

    Google Scholar 

  37. Duman S, Güvenç U, Yörükeren N (2010) Gravitational search algorithm for economic dispatch with valve-point effects. Int Rev Electr Eng 5(6):2890–2895

    Google Scholar 

  38. Bhattacharya A, Chattopadhyay Pranab Kumar (2010) Solving complex economic load dispatch problems using biogeography-based optimization. Expert Syst Appl 37(5):3605–3615

    Article  Google Scholar 

  39. Bhattacharya A, Chattopadhyay PK (2010) Application of biogeography-based optimization for solving multi-objective economic emission load dispatch problems. Electric Power Components and Systems 38(3):340–365

    Article  Google Scholar 

  40. Rayapudi SR (2011) An intelligent water drop algorithm for solving economic load dispatch problem. Int J Elect Electron Eng 5(2):43–49

    Google Scholar 

  41. Pandi V (2011) Ravikumar, and Bijaya Ketan Panigrahi. “Dynamic economic load dispatch using hybrid swarm intelligence based harmony search algorithm.”. Expert Syst Appl 38(7):8509–8514

    Article  Google Scholar 

  42. Swain RK, Sahu NC, Hota PK (2012) Gravitational search algorithm for optimal economic dispatch. Procedia Technology 6:411–419

    Article  Google Scholar 

  43. Yang Xin-She (2012) Seyyed Soheil Sadat Hosseini, and Amir Hossein Gandomi. “Firefly algorithm for solving non-convex economic dispatch problems with valve loading effect.”. Appl Soft Comput 12(3):1180–1186

    Article  Google Scholar 

  44. Rajasomashekar S, Aravindhababu P (2012) Biogeography based optimization technique for best compromise solution of economic emission dispatch. Swarm Evolu Comput 7:47–57

    Article  Google Scholar 

  45. Güvenç U, Sönmez Y, Duman S, Yörükeren N (2012) Combined economic and emission dispatch solution using gravitational search algorithm. Scientia Iranica 19(6):1754–1762

    Article  Google Scholar 

  46. Adriane BS (2013) Cuckoo search for solving economic dispatch load problem. Intell Cont Autom 4:385–390

    Article  Google Scholar 

  47. Wang L, Li L (2013) An effective differential harmony search algorithm for the solving non-convex economic load dispatch problems. Int J Electr Power Energy Syst 44(1):832–843

    Article  Google Scholar 

  48. Dubey, Hari Mohan, Manjaree Pandit, B. K. Panigrahi, and Mugdha Udgir. “Economic Load Dispatch by Hybrid Swarm Intelligence Based Gravitational Search Algorithm.” Int J Intell Syst Appl (Ijisa) 5(8) (2013):21–32

  49. Ravi CN, Christober Asir Rajan C (2013) Differential Evolution technique to solve Combined Economic Emission Dispatch. In: 3rd international conference on electronics, biomedical engineering and its applications (ICEBEA’2013) January, pp 26–27

  50. Gopalakrishnan R, Krishnan A (2013) An efficient technique to solve combined economic and emission dispatch problem using modified Ant colony optimization. Sadhana 38(4):545–556

    Article  MathSciNet  MATH  Google Scholar 

  51. SECUI, Dinu Călin, Gabriel Bendea, and Cristina HORA. “A Modified Harmony Search Algorithm for the Economic Dispatch Problem.” Studies in Informatics and Control 23, no. 2 (2014): 143-152

  52. Kherfane RL, Younes M, Kherfane N, Khodja F (2014) Solving economic dispatch problem using hybrid GA-MGA. Energy Procedia 50:937–944

    Article  Google Scholar 

  53. Aydin D, Ozyon S, Yaşar C, Liao T (2014) Artificial bee colony algorithm with dynamic population size to combined economic and emission dispatch problem. Int J Electr Power Energy Syst 54:144–153

    Article  Google Scholar 

  54. Thao, Nguyen Thi Phuong, and Nguyen Trung Thang. “Environmental Economic Load Dispatch with Quadratic Fuel Cost Function Using Cuckoo Search Algorithm.” International Journal of u-and e-Service, Science and Technology 7, no. 2 (2014): 199-210

  55. Mirjalili S, Lewis A (2014) Adaptive gbest-guided gravitational search algorithm. Neural Comput Appl 25(7–8):1569–1584

    Article  Google Scholar 

  56. Dhillon JS, Kothari DP (2010) Power system optimization, 2nd edn. Prentice Hall India, New Delhi

    Google Scholar 

  57. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey Wolf Optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

  58. Mallikarjuna B, Harinath Reddy K, Hemakeshavulu O (2014) Economic load dispatch with valve-point result employing a binary bat formula. Int J Elect Comput Eng (IJECE) 4(1):101–107 (ISSN: 2088-8708)

  59. Mirjalili S (2015) The Ant Lion Optimizer. Adv Eng Softw. doi:10.1016/j.advengsoft.2015.01.010

    Google Scholar 

  60. Wood AJ, Wollenberg BF (1996) Power generation, operation and control, 2nd edn. Wiley, New York

    Google Scholar 

  61. Kamboj VK, Bath SK, Dhillon JS Solution of non-convex economic load dispatch problem using Grey Wolf Optimizer. Neural Comput Appl. doi:10.1007/s00521-015-1934-8

  62. Mirjalili S, Mirjalili SM, Hatamlou A (2015) Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput Appl. doi:10.1007/s00521-015-1870-7

    Google Scholar 

  63. Mirjalili S (2015) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl. doi:10.1007/s00521-015-1920-1

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Seyedali Mirjalili, Professor, School of Information and Communication Technology, Griffith University, Nathan, Brisbane, Australia, for their continuous support for implementing the ALO algorithm for economic load dispatch problem and Dr. J.S. Dhillon, Professor, Sant Longowal Institute of Engineering and Technology, Punjab (India), for their guidance, continuous support and encouragement and DAV University, Jalandhar, for providing advanced research facilities during research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikram Kumar Kamboj.

Appendix

Appendix

 % MATLAB codes for the function B proposed by Seyedali Mirjalili [59]

function [M Ant, M Antlion] = B(M Ant, M Antlion)

for i = 1: n

  Antlion = RouletteWheelSelection (M Antlion, 1/MOAL)

Update c and d using Eqs. (13) and (14)

  c = Antlion + c

  d = Antlion + d

  celite = Elite + c

  delite = Elite + d

for j = 1: d

  R A  = normalize(R A , c, d)

  R E  = X(t)

  R E  = normalize(RE, Celite,delite)

  M Ant (i,j) = (R A  + R E )/2

end

end

M OA = FitnessFunction(MAnt)

M combined = concanenation of M Ant and M Antlion

M combined = sort(Mcombined)

M Antlion = the first n rows of Mcombined

If fintessfunction(M Antlion(1,:)) < f(Elite)

Elite = M Antlion(1, :)

end

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamboj, V.K., Bhadoria, A. & Bath, S.K. Solution of non-convex economic load dispatch problem for small-scale power systems using ant lion optimizer. Neural Comput & Applic 28, 2181–2192 (2017). https://doi.org/10.1007/s00521-015-2148-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-015-2148-9

Keywords

Navigation