Skip to main content

Advertisement

Log in

An efficient algorithm for 3D hand gesture recognition using combined neural classifiers

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Gestures are the dynamic movements of hands within a certain time interval, which are of practical importance in many areas, such as human–computer interaction, computer vision, and computer graphics. The human hand gesture can provide a free and natural alternative to today’s cumbersome interface devices so as to improve the efficiency and effectiveness of human–computer interaction. This paper presents a neural-based combined classifier for 3D gesture recognition. The combined classifier is based on varying the parameters related to both the design and training of neural network classifier. The boosting algorithm is used to make perturbation of the training set employing the Multi-Layer Perceptron as base classifier. The final decision of the ensemble of classifiers is based on the majority voting rule. Experiments performed on 3D gesture database show the robustness of the proposed technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mitra S, Acharya T (2007) Gesture recognition: a survey. IEEE Trans Syst Man Cybern Part C Appl Rev 37(3):311–324

    Article  Google Scholar 

  2. Cipolla R, Pentland A (1998) Computer vision for human-machine interaction. Cambridge University Press, Cambridge, MA

    Book  Google Scholar 

  3. Pavlovic VI, Sharma R, Huang TS (1997) Visual interpretation of hand gestures for human–computer interaction. IEEE Trans Pattern Anal Machine Intell 19(7):677–695

    Article  Google Scholar 

  4. Kittler J, Hatef M, Duin RPW, Matas J (1998) On combining classifiers. IEEE Trans Pattern Anal Machine Intell 3:226–239

    Article  Google Scholar 

  5. Rogova G (1994) Combining the results of several neural network classifiers. Neural Netw 7(5):777–781

    Article  Google Scholar 

  6. Zhou ZH, Wu J, Tang W (2002) Ensembling neural networks: many could be better than all. Artif Intel 137(1–2):239–263

    Article  MathSciNet  MATH  Google Scholar 

  7. Kuncheva LI (2004) Combining pattern classifiers: methods and algorithms. Wiley-Interscience

  8. García-Osorio C, de Haro-García A, García-Pedrajas N (2010) Democratic instance selection: a linear complexity instance selection algorithm based on classifier ensemble concepts. Artif Intell 174(5–6):410–441

    Article  Google Scholar 

  9. Galar M, Fernández A, Barrenechea E, Bustince H, Herrera F (2011) An overview of ensemble methods for binary classifiers in multi-class problems: experimental study on one-vs-one and one-vs-all schemes. Pattern Recogn 44(8):1761–1776

    Article  Google Scholar 

  10. Tabassian M, Ghaderi R, Ebrahimpour R (2012) Combination of multiple diverse classifiers using belief functions for handling data with imperfect labels. Expert Syst Appl 39(2):1698–1707

    Article  Google Scholar 

  11. Bolón-Canedo V, Sánchez-Maroño N, Alonso-Betanzos A (2012) An ensemble of filters and classifiers for microarray data classification. Pattern Recogn 45(1):531–539

    Article  Google Scholar 

  12. Podolak IT, Roman A (2011) CORES: Fusion of supervised and unsupervised training methods for a multi-class classification problem. Pattern Anal Appl 1–19

  13. Diettrich TG (2000) Ensemble methods in machine learning. In: Proceedings of the first international workshop on multiple classifier systems, Cagliari, Italy, June, Lecture Notes in Computer Science, Springer, Berlin, pp 1–15

  14. Breiman L (1997) Bagging predictors. Machine Lear 24(2):123–140

    Google Scholar 

  15. Freund Y, Schapire RE (1997) A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci 55(1):119–139

    Article  MathSciNet  MATH  Google Scholar 

  16. Giacinto G, Roli F (2001) Design of effective neural network ensembles for image classification. J Image Vis Comp 19(9–10):697–705

    Google Scholar 

  17. Sharkey AJC (1996) On combining artificial neural nets. Connection Sci 8:299–314

    Article  Google Scholar 

  18. Sharkey AJC, Sharkey NE, Gerecke U, Chandroth GO (2000) The test and select approach to ensemble combination. In: Kittler J, Roli F (eds) Proceedings of the first international workshop on multiple classifier systems (MCS2000) LNCS 1857. Springer, pp 30–44

  19. Rabiner LR (1989) A tutorial on hidden Markov models and selected applications in speech recognition. In: Proceedings IEEE 77(2):257–285

  20. Yamato J, Ohya J, Ishii K (1992) Recognizing human action in time sequential images using hidden Markov model. In: Proceedings of IEEE international conference on computer vision pattern recogn. Champaign, IL, pp 379–385

  21. Samaria F, Young S (1994) HMM-based architecture for face identification. Image Vis Comput 12:537–543

    Article  Google Scholar 

  22. Arulapalam S, Maskell S, Gordon N, Clapp T (2001) A tutorial on particle filters for on-line nonlinear/non-Gaussian Bayesian tracking. IEEE Trans Signal Proc 50(2):174–188

    Article  Google Scholar 

  23. Kwok C, Fox D, Meila M (2004) Real-time particle filters. In: Proceedings IEEE, vol. 92, no. 3, pp 469–484

  24. Welch G, Bishop G (2000) An introduction to the Kalman filter. Department of Computer Science, University of North Carolina, Chapel Hill, Technical Report, TR95041

  25. Isard M, Blake A (1996) Contour tracking by stochastic propagation of conditional density. In: Proceedings of European conference on computer vision, Cambridge, UK pp 343–356

  26. Isard M, Blake A (1998) CONDENSATION—conditional density propagation for visual tracking. Int J Comput Vis 1:5–28

    Article  Google Scholar 

  27. Doucet A, De Freitas N, Gordon N (2001) Sequential monte carlo in practice. Springer, NewYork, NY

    Book  MATH  Google Scholar 

  28. Davis J, Shah M (1994) Visual gesture recognition. Vis Image Signal Proc 141:101–106

    Article  Google Scholar 

  29. Bobick AF, Wilson AD (1997) A state-based approach to the representation and recognition of gesture. IEEE Trans Pattern Anal Mach Intell 19(12):1235–1337

    Article  Google Scholar 

  30. Yeasin M, Chaudhuri S (2000) Visual understanding of dynamic hand gestures. Pattern Recogn 33:1805–1817

    Article  Google Scholar 

  31. Hong P, Turk M, Huang TS (2000) Gesture modeling and recognition using finite state machines. In: Proceedings 4th IEEE international conference autom on face gesture recognition, Grenoble, France, pp 410–415

  32. Duda RO, Hart PE, Stork DG (2001) Pattern classification, 2nd edn. Wiley, New York, NY

    MATH  Google Scholar 

  33. Gonzalez RC, Woods RE (2008) Digital image processing, 3rd edn. Prentice Hall, Englewood Cliffs NJ

    Google Scholar 

  34. Kass M, Witkin A, Terzopoulos D (1988) SNAKE: active contour models. Int J Comput Vis 321–331

  35. Haykin S (1999) Neural networks: a comprehensive foundation. Macmillan, NewYork, NY

    MATH  Google Scholar 

  36. Schlenzig J, Hunter E, Jain R (1994) Vision based hand gesture interpretation using recursive estimation. In: Proceedings 28th asilomar conference on signals, systems, and computers

  37. Starner TE, Pentland A (1995) Visual recognition of American sign language using hidden Markov models. In: Proceedings first int’l workshop automatic face and gesture recognition, pp 189–194

  38. Starnder T, Weaver J, Pentland A (1998) Real-time American sign language recognition using desk and wearable computer based video. IEEE Trans Pattern Anal Machine Intell 20(12):1371–1375

    Article  Google Scholar 

  39. Fels SS, Hinton GE (1993) Glove-talk: a neural network interface between a data-glove and a speech synthesizer. IEEE Trans Neural Netw 4(1):2–8

    Article  Google Scholar 

  40. Fels SS, Hinton GE (1997) Glove-talk II: a neural network interface which maps gestures to parallel format speech synthesizer controls. IEEE Trans Neural Netw 9(1):205–212

    Article  Google Scholar 

  41. Siskind JM, Morris Q (1996) A maximum-likelihood approach to visual event classification. In: Proceedings Fourth European conference on computer vision, pp 347–360

  42. Bobick AF, Wilson AD (1997) A state-based approach to the representation and recognition of gesture. IEEE Trans Pattern Anal Machine Intell 19(12):1325–1337

    Article  Google Scholar 

  43. Wilson AD, Bobick AF (1999) Parametric hidden markov models for gesture recognition. IEEE Trans Pattern Anal Machine Intell 21(9):884–900

    Article  Google Scholar 

  44. Black MJ, Jepson AD (1998) A probabilistic framework for matching temporal trajectories: CONDENSATION-based recognition of gesture and expressions. In: Proceedings fifth European conference on computer vision, pp 909–924

  45. Vogler C, Metaxas D (1998) ASL recognition based on a coupling between HMMs and 3D motion analysis. In: Proceedings sixth IEEE int’l conference on computer vision, pp 363–369

  46. Vogler C, Metaxas D (2001) A framework for recognizing the simultaneous aspects of American sign language. Comput Vis Image Understand 81(3):358–384

    Article  MATH  Google Scholar 

  47. Lee HK, Kim JH (1999) An HMM-based threshold model approach for gesture recognition. IEEE Trans Pattern Anal Machine Intell 21(10):961–973

    Article  Google Scholar 

  48. Suk H-I, Sin B-K, Lee S-W (2010) Hand gesture recognition based on dynamic Bayesian network framework. Pattern Recogn 43(9):3059–3072

    Article  MATH  Google Scholar 

  49. Kao C-Y, Fahn C-S (2011) A human-machine interaction technique: hand gesture recognition based on hidden markov models with trajectory of hand motion. Procedia Eng 15:3739–3743

    Article  Google Scholar 

  50. Huang D-Y, Hu W-C, Chang S-H (2011) Gabor filter-based hand-pose angle estimation for hand gesture recognition under varying illumination. Expert Syst Appl 38(5):6031–6042

    Article  Google Scholar 

  51. Tsai C-Y, Lee Y-H (2011) The parameters effect on performance in ANN for hand gesture recognition system. Expert Syst Appl 38(7):7980–7983

    Article  MathSciNet  Google Scholar 

  52. Freund Y, Schapire RE (1996) Experiments with a new boosting algorithm. In machine learning. In: Proceedings of the thirteenth international conference, pp 148–15

  53. Ho TK (1998) The random subspace method for constructing decision forests. IEEE Trans Pattern Anal Machine Intell 20(8):832–844

    Article  Google Scholar 

  54. Breiman L (1998) Arcing classifiers. The Annals Stat 26(3):801–849

    Article  MathSciNet  MATH  Google Scholar 

  55. Eibl G, Pfeiffer K-P (2005) Multiclass boosting for week classifiers. J Machine Learn Res 6:189–210

    MathSciNet  MATH  Google Scholar 

  56. Schapire RE, Freund Y, Bartlett P, Lee W (1998) Boosting the margin: a new explanation for the effectiveness of voting methods. The Annals Stat 26(5):1651–1686

    Article  MathSciNet  MATH  Google Scholar 

  57. Friedman J, Hastie T, and Tibshirani R (1998) Additive logistic regression: a statistical view of boosting. Technical Report Technical Report, Stanford University, Department of Statistics

  58. Tolba AS (2000) A parameter-based combined classifier for invariant face recognition. Cybern Syst 31:837–849

    Article  MATH  Google Scholar 

  59. Tolba AS, Abu-Rezq AN (2000) Combined classifiers for invariant face recognition. Pattern Anal Appl 3(4):289–302

    Article  MathSciNet  MATH  Google Scholar 

  60. Su M, Basu M (2001) Gating improves neural network performance. In: Proceedings IEEE conference on IJCNN’01, vol. 3, pp 2159–2164

  61. Zhang BT, Joung JG (2000) Building optimal committees of genetic programs. In: parallel problem solving from nature—PPSN VI, pp 231–240

  62. Liu C-L (2005) Classifier combination based on confidence transformation. Pattern Recogn 38(1):11–28

    Article  MATH  Google Scholar 

  63. Kostin A (2006) A simple and fast multi-class piecewise linear pattern classifier. Pattern Recogn 39(11):1949–1962

    Article  MATH  Google Scholar 

  64. Ou G, Murphey YL (2007) Multi-class pattern classification using neural networks. Pattern Recogn 40(1):4–18

    Article  MATH  Google Scholar 

  65. Shields MW, Matthew C (2008) Casey, theoretical framework for multiple neural network systems. Neurocomputing 71(7–9):1462–1476

    Article  Google Scholar 

  66. Kang H-J (2003) Combining multiple classifiers based on third-order dependency for handwritten numeral recognition. Pattern Recogn Lett 24(16):3027–3036

    Article  Google Scholar 

  67. Meynet J, Thiran JP (2010) Information theoretic combination of pattern classifiers. Pattern Recogn 43(10):3412–3421

    Article  MATH  Google Scholar 

  68. Bulacio P, Guillaume S, Tapia E, Magdalena L (2010) A selection approach for scalable fuzzy integral combination. Inf Fus 11(2):208–213

    Article  Google Scholar 

  69. Terry W (2006) Accuracy/diversity and ensemble MLP classifier design. IEEE Trans Neural Netw 17(5):1194–1211

    Article  Google Scholar 

  70. Sheng J (2003) A study of adaboost in 3D gesture recognition. Technical report, Computer Science Department, Toronto University, Toronto, ON

  71. Schapire RE (1990) The strength of weak learnability. Machine Learn 5(2):197–227

    Google Scholar 

  72. Hastie T, Tibshirani R, Friedman J (2001) The elements of statistical learning: data mining, inference, and prediction, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

  73. Hilario M, Model combination. Geneva Lab, cui.unige.ch/AI-group/teaching/dmc/09-10/…/dm11-ensembles.pdf

  74. Tang H-M, Lyu MR, King I (2003) Face recognition committee machines: dynamic versus static structures. ICIAP 121–126

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. El-Baz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Baz, A.H., Tolba, A.S. An efficient algorithm for 3D hand gesture recognition using combined neural classifiers. Neural Comput & Applic 22, 1477–1484 (2013). https://doi.org/10.1007/s00521-012-0844-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-012-0844-2

Keywords

Navigation