Skip to main content
Log in

A simple and fast representation-based face recognition method

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this paper, we propose a very simple and fast face recognition method and present its potential rationale. This method first selects only the nearest training sample, of the test sample, from every class and then expresses the test sample as a linear combination of all the selected training samples. Using the expression result, the proposed method can classify the testing sample with a high accuracy. The proposed method can classify more accurately than the nearest neighbor classification method (NNCM). The face recognition experiments show that the classification accuracy obtained using our method is usually 2–10% greater than that obtained using NNCM. Moreover, though the proposed method exploits only one training sample per class to perform classification, it might obtain a better performance than the nearest feature space method proposed in Chien and Wu (IEEE Trans Pattern Anal Machine Intell 24:1644–1649, 2002), which depends on all the training samples to classify the test sample. Our analysis shows that the proposed method achieves this by modifying the neighbor relationships between the test sample and training samples, determined by the Euclidean metric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chien JT, Wu CC (2002) Discriminant waveletfaces and nearest feature classifiers for face recognition. IEEE Trans Pattern Anal Machine Intell 24:1644–1649

    Article  Google Scholar 

  2. Wright J, Yang AY, Ganesh A et al (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):210–227

    Article  Google Scholar 

  3. Wright J, Ma Y, Mairal J, et al. (2009) Sparse. Representation for computer vision and pattern recognition. In: Proceedings of IEEE, pp 1–8

  4. Xu Y, Zhang D, Yang J, Yang J-Y (2011) A two-phase test sample sparse representation method for use with face recognition. IEEE Trans Circuits Syst Video Technol. doi:10.1109/TCSVT.2011.2138790

    Google Scholar 

  5. Kroeker KL (2009) Face recognition breakthrough. Commun ACM 52(8):18–19

    Google Scholar 

  6. Shi Y, Dai D, Liu C, Yan H (2009) Sparse discriminant analysis for breast cancer biomarker identification and classification. Nat Sci 19(11):1635–1642

    Article  Google Scholar 

  7. Candes E, Romberg J (2005) l1-magic: recovery of sparse signals via convex programming http://www.acm.caltech.edu/l1magic/

  8. Geiger D, Liu T, Donahue M (1999) Sparse representations for image decompositions. Int J Comput Vis 33(2):139–156

    Article  Google Scholar 

  9. Hyvärinen A (1999) Survey on independent component analysis. Neural Computing Surveys 2:94–128

    Google Scholar 

  10. Liu C, Yang J (2009) ICA color space for pattern recognition. IEEE Trans on Neural Netw 20(2):248–257

    Article  Google Scholar 

  11. Zhang L, Gao Q, Zhang D (2008) Directional independent component analysis with tensor representation. June, Anchorage, Alaska, U.S. 2008, CVPR, pp 1–7, 23–28

  12. Moon H, Phillips PJ (2001) Computational and performance aspects of PCA-based face recognition algorithms. Perception 30:303–321

    Article  Google Scholar 

  13. Yang J, Zhang D, Yang J-Y (2006) Locally principal component learning for face representation and recognition. Neurocomputing 69(13–15):1697–1701

    Article  Google Scholar 

  14. Xu Y, Zhang D, Yang J-Y (2010) A feature extraction method for use with bimodal biometrics. Pattern Recogn 43:1106–1115

    Article  MATH  Google Scholar 

  15. Yang J, Zhang D, Frangi AF, Yang J-Y (2004) Two-dimensional PCA: a new approach to appearance-based face representation and recognition. IEEE Trans Pattern Anal Mach Intell 26(1):131–137

    Google Scholar 

  16. Yang W, Sun C, Ricanek K (2011) Sequential row–column 2DPCA for face recognition, Neural Comput Applications. 24 June 2011, doi:10.1007/s00521-011-0676-5, pp 1–7

  17. Xu Y, Zhang D (2011) Accelerating the kernel-method-based feature extraction procedure from the viewpoint of numerical approximation. Neural Comput Appl 20:1087–1096

    Google Scholar 

  18. Song F, Zhang D, Mei D, Guo Z (2007) A multiple maximum scatter difference discriminant criterion for facial feature extraction. IEEE Trans on Syst Man Cybern Part B 37(6):1599–1606

    Article  Google Scholar 

  19. Etemad K, Chellappa R (1997) Discriminant analysis for recognition of human face images. J Opt Soc Am A 14(8):1724–1733

    Article  Google Scholar 

  20. Xu Y, Yang J-Y, Lu J, Yu D-J (2004) An efficient renovation on kernel Fisher discriminant analysis and face recognition experiments. Pattern Recogn 37(10):2091–2094

    Article  Google Scholar 

  21. Liu C, Wechsler H (2002) Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition. IEEE Trans on Image Process 11(4):467–476

    Article  Google Scholar 

  22. Loog M, Wu X-J, Lu J-P (2008) A note on an extreme case of the generalized optimal discriminant transformation. Neurocomputing 72(1–3):664–665

    Article  Google Scholar 

  23. Wu F, Wang W, Yang Y, Zhuang Y, Nie F (2010) Classification by semi-supervised discriminative regularization. Neurocomputing 73(10–12):1641–1651

    Article  Google Scholar 

  24. Yang J, Yang J-Y (2003) Why can LDA be performed in PCA transformed space? Pattern Recogn 36(2):563–566

    Article  Google Scholar 

  25. Xu Y, Yang J-Y, Jin Z (2004) A novel method for Fisher discriminant analysis. Pattern Recogn 37:381–384

    Article  MATH  Google Scholar 

  26. Nanni L, Lumini A (2009) Particle swarm optimization for ensembling generation for evidential k-nearest-neighbour classifier. Neural Comput Appl 18(2):105–108

    Article  Google Scholar 

  27. http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html

  28. http://cvc.yale.edu/projects/yalefaces/yalefaces.html

  29. http://cobweb.ecn.purdue.edu/~aleix/aleix_face_DB.html

  30. Xu Y, Jin Z (2008) Down-sampling face images and low-resolution face recognition. The third international conference on innovative computing, information and control, 18–20 June, Dalian, China, pp 392–395

Download references

Acknowledgments

This article is partly supported by Key Laboratory of Network Oriented Intelligent Computation, Program for New Century Excellent Talents in University (Nos. NCET-08-0156 and NCET-08-0155), Natural Scientific Research Innovation Foundation in Harbin Institute of Technology (HIT. NSRIF. 2009130), National Nature Science Committee of China (Nos. 61071179, 60803090, 60902099 and 61001037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Y., Zhu, Q. A simple and fast representation-based face recognition method. Neural Comput & Applic 22, 1543–1549 (2013). https://doi.org/10.1007/s00521-012-0833-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-012-0833-5

Keywords

Navigation