Skip to main content

Advertisement

Log in

Segmental measurement of breast cancer-related arm lymphoedema using perometry and bioimpedance spectroscopy

  • Original Article
  • Published:
Supportive Care in Cancer Aims and scope Submit manuscript

Abstract

Purpose

To determine if bioimpedance spectroscopy (BIS) could detect localised lymphoedema of the arm and to compare BIS measurements with equivalent measures of limb volume by perometry.

Methods

Women with mild to severe upper limb lymphoedema (n = 29) and women with no history of lymphoedema (n = 11) participated. Commencing at the ulnar styloid of the wrist, 4 × 10 cm segment measurements were made of each arm using both BIS and perometry.

Results

Average BIS inter-limb ratios for the total arm and each arm segment were higher than comparable perometry measures in women with lymphoedema, but similar to perometry measures for women without lymphoedema. Limits of agreement analysis showed that the mean difference between methods varied according to segment measured, ranging from 8.5% for the uppermost segment of the arm to 16.6% for the forearm segment just below the elbow. For all limb segments, there was a positive bias towards BIS measurements, which increased as lymphoedema severity increased.

Conclusion

BIS can be used for localised measurement of lymphoedema. Because it is specific to extracellular fluid, BIS is more sensitive to localised lymphoedema than perometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lee TS, Kilbreath SL, Sullivan G, Refshauge K, Beith J, Harris L (2009) Factors that affect intention to avoid strenuous arm activity after breast cancer surgery. Oncol Nurs Forum 36:454–462

    Article  PubMed  Google Scholar 

  2. Hayes S, Janda M, Cornish B, Battistutta D, Newman B (2008) Lymphedema after breast cancer: incidence, risk factors, and effect on upper body function. Am J Clin Oncol 26:3536–3542

    Article  Google Scholar 

  3. Stanton A, Modi S, Mellor R, Levick J, Mortimer P (2009) Recent advances in breast cancer-related lymphedema of the arm: lymphatic pump failure and predisposing factors. Lymphat Res Biol 7:29–45

    Article  PubMed  Google Scholar 

  4. Stanton AW, Mellor RH, Cook GJ, Svensson WE, Peters AM, Levick JR, Mortimer PS (2003) Impairment of lymph drainage in subfascial compartment of forearm in breast cancer-related lymphedema. Lymphat Res Biol 1:121–132

    Article  PubMed  CAS  Google Scholar 

  5. Stanton AWB, Svensson WE, Mellor RH, Peters AM, Levick JR, Mortimer PS (2001) Differences in lymph drainage between swollen and non-swollen regions in arms with breast-cancer-related lymphoedema. Clin Sci 101:131–140

    Article  PubMed  CAS  Google Scholar 

  6. Modi S, Stanton A, Mellor R, Peters A, Levick J, Mortimer P (2005) Regional distribution of epifascial swelling and epifascial lymph drainage rate constants in breast cancer-related lymphedema. Lymphat Res Biol 3:3–15

    Article  PubMed  CAS  Google Scholar 

  7. Deltombe T, Jamart J, Recloux S, Legrand C, Vanderbroek N, Theys S, Hanson P (2007) Reliability and limits of agreement of circumferential, water displacement and optoelectronic volumetry in the measurement of upper limb lymphedema. Lymphology 40:26–34

    PubMed  CAS  Google Scholar 

  8. Stout Gergich N, Pfalzer L, McGarvey C, Springer B, Gerber L, Soballe P (2008) Preoperative assessment enables the early diagnosis and successful treatment of lymphedema. Cancer 112:2809–2819

    Article  PubMed  Google Scholar 

  9. Tewari N, Gill PG, Bochner MA, Kollias J (2008) Comparison of volume displacement versus circumference measurements for lymphoedema: implications for the SNAC trial. ANZ J Surg 78:889–893

    Article  PubMed  Google Scholar 

  10. Stanton AW, Badger C, Sitzia J, Stanton AW, Badger C, Sitzia J (2000) Non-invasive assessment of the lymphedematous limb. Lymphology 33:122–135

    PubMed  CAS  Google Scholar 

  11. Stanton AW, Northfield JW, Holroyd B, Mortimer PS, Levick JR, Stanton AW, Northfield JW, Holroyd B, Mortimer PS, Levick JR (1997) Validation of an optoelectronic limb volumeter (perometer). Lymphology 30:77–97

    PubMed  CAS  Google Scholar 

  12. Hayes S, Janda M, Cornish B, Battistutta D, Newman B (2008) Lymphedema secondary to breast cancer: how choice of measure influences diagnosis, prevalence, and identifiable risk factors. Lymphology 41:18–28

    PubMed  CAS  Google Scholar 

  13. Cornish B (2006) Bioimpedance analysis: scientific background. Lymphat Res Biol 4:47–56

    Article  PubMed  Google Scholar 

  14. Cornish BH, Bunce IH, Ward LC, Jones LC, Thomas BJ (1996) Bioelectrical impedance for monitoring the efficacy of lymphoedema treatment programmes. Breast Cancer Res Treat 38:169–176

    Article  PubMed  CAS  Google Scholar 

  15. Cornish BH, Chapman M, Hirst C, Mirolo B, Bunce IH, Ward LC, Thomas BJ (2001) Early diagnosis of lymphedema using multiple frequency bioimpedance. Lymphology 34:2–11

    PubMed  CAS  Google Scholar 

  16. Ward LC, Kilbreath SL, Cornish BH (2008) Bioelectrical impedance analysis for early detection of lymphedema. In: Lymphedema diagnosis and therapy 4th Ed. Edited by Weissleder H and Schuchhardt C. Bonn: Viavital: 503–517

  17. Czerniec S, Ward LC, Refshauge K, Beith J, Lee M, York S, Kilbreath SL (2010) Assessment of breast cancer related arm lymphedema—comparison of physical measurement methods and self-report. Cancer Invest 28:54–62

    Article  PubMed  CAS  Google Scholar 

  18. Ward LC, Czerniec SA, Kilbreath SL (2009) Quantitative bioimpedance spectroscopy for the assessment of lymphoedema. Breast Cancer Res Treat 117:541–547

    Article  PubMed  CAS  Google Scholar 

  19. York S, Ward L, Czerniec S, Lee M, Refshauge K, Kilbreath S (2009) Single frequency versus bioimpedance spectroscopy in the assessment of lymphoedema. Breast Cancer Res Treat 117:177–182

    Article  PubMed  CAS  Google Scholar 

  20. Lin LI (1989) A concordance correlation coefficient to evaluate reproducibility. Biometrics 45:2255–2268

    Article  Google Scholar 

  21. Bland J, Altman D (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1(8476):307–310

    PubMed  CAS  Google Scholar 

  22. Armer JM, Stewart BR (2005) A comparison of four diagnostic criteria for lymphedema in a post-breast cancer population. Lymphat Res Biol 3:208–217

    Article  PubMed  Google Scholar 

  23. Ward L (2006) Bioelectrical impedance analysis: proven utility in lymphedema risk assessment and therapeutic monitoring. Lymphat Res Biol 4:51–56

    Article  PubMed  Google Scholar 

  24. Ward LC, Czerniec S, Kilbreath SL (2009) Operational equivalence of bioimpedance indices and perometry for the assessment of unilateral arm lymphedema. Lymphat Res Biol 7:81–85

    Article  PubMed  Google Scholar 

  25. Rockson SG (2006) Addressing the unmet needs in lymphedema risk management. Lymphat Res Biol 4:41–46

    Article  Google Scholar 

  26. Warren AG, Brorson H, Borud LJ, Slavin AS (2007) Lymphedema: a comprehensive review. Ann Plast Surg 59:464–472

    Article  PubMed  CAS  Google Scholar 

  27. Ramos S, O'Donnell L, Knight G (1999) Edema volume, not timing, is the key to success in lymphedema treatment. Am J Surg 178:311–315

    Article  PubMed  CAS  Google Scholar 

  28. Cornish BH, Chapman M, Thomas BJ, Ward LC, Bunce IH, Hirst C (2000) Early diagnosis of lymphedema in postsurgery breast cancer patients. Ann N Y Acad Sci 904:571–575

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Grant assistance from the National Breast Cancer Research Foundation, Australia and RT Hall Foundation is gratefully acknowledged. Dr. Roger Adams is thanked for his statistical assistance.

Declaration of interest

Author L. Ward discloses that he has consulted to ImpediMed Ltd. ImpediMed Ltd. had no involvement, financial or otherwise, in the conception or execution of this study or in the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharon L. Kilbreath.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Czerniec, S.A., Ward, L.C., Lee, MJ. et al. Segmental measurement of breast cancer-related arm lymphoedema using perometry and bioimpedance spectroscopy. Support Care Cancer 19, 703–710 (2011). https://doi.org/10.1007/s00520-010-0896-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00520-010-0896-8

Keywords

Navigation