Skip to main content

Advertisement

Log in

Anti-amoebic activity of a cecropin-melittin hybrid peptide (CM11) against trophozoites of Entamoeba histolytica

  • original article
  • Published:
Wiener klinische Wochenschrift Aims and scope Submit manuscript

Summary

Entamoeba histolytica is an intestinal parasite that is located in the lumen of the human intestine and can attack the epithelium. Antimicrobial peptides (AMPs) are effective against the wide range of microorganisms, such as bacteria, fungi, viruses, yeasts, and protozoa. The CM11 is a chimeric peptide that is derived from bee venom and butterfly compounds. In this study, the cytotoxic effect of CM11 on Human colonic carcinoma (Caco‑2) cells and E. histolytica were assayed in various concentrations of peptide and metronidazole. The MTT results showed that the highest percentage of cytotoxicity on Caco‑2 cells was in 24 μg/ml of CM11 peptide at 24 h and 48 h, which was 49.8%, and 44.3%, respectively. In the metronidazole group, the highest cytotoxicity with 40 μg/ml concentration was observed after 24 h and 48 h, with 43.5%, and 42.1%, respectively. The highest rate of apoptosis induced by CM11 on Caco‑2 was 53.9% and 51.4% after 24 h and 48 h, respectively; however, these rates were 19.1% and 33.4% in the metronidazole group. The effect of peptide and metronidazole on E. histolytica at 24 h and 48 h showed that at the highest concentration of CM11 peptide (24 μg/ml) the cytotoxic effect was 93.7% and 94.9% and for metronidazole (40 μg/ml) was 65.5% and 74.3%, respectively. In coculture, 63.5% and 57.7% of parasites were killed in the highest concentration of CM11 and metronidazole, respectively. The results of this study revealed that CM11 peptide has a high toxicity on E. histolytica, and the use of antimicrobial peptides in the future can be considered as anti-amoebic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2095–128.

    Article  Google Scholar 

  2. Espinosa-Cantellano M, Martínez-Palomo A. Pathogenesis of intestinal amebiasis: from molecules to disease. Clin Microbiol Rev. 2000;13:318–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Turkeltaub JA, McCarty TR, Hotez PJ. The intestinal protozoa: Emerging impact on global health and development. Curr Opin Gastroenterol. 2015;31:38–44.

    Article  PubMed  Google Scholar 

  4. Calzada F, Yépez-Mulia L, Aguilar A. In vitro susceptibility of Entamoeba histolytica and Giardia lamblia to plants used in Mexican traditional medicine for the treatment of gastrointestinal disorders. J Ethnopharmacol. 2006;108:367–70.

    Article  PubMed  Google Scholar 

  5. Petri WA Jr, Haque R, Mondal D, Karim A, Molla IH, Rahim A, et al. Prospective case-control study of the association between common enteric protozoal parasites and diarrhea in Bangladesh. Clin Infect Dis. 2009;48:1191–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Townson SM, Boreham PFL, Upcroft P, Upcroft JA. Resistance to the nitroheterocyclic drugs. Acta Trop. 1994;56:173–94.

    Article  CAS  PubMed  Google Scholar 

  7. Elizondo G, Gonsebatt ME, Salazar AM, Lares I, Santiago P, Herrera J, et al. Genotoxic effects of metronidazole. Mutat Res Genet Toxicol. 1996;370:75–80.

    Article  CAS  Google Scholar 

  8. Bendesky A, Menéndez D, Ostrosky-Wegman P. Is metronidazole carcinogenic? Mutat Res Rev Mutat Res. 2002;511:133–44.

    Article  CAS  Google Scholar 

  9. Li Y, Xiang Q, Zhang Q, Huang Y, Su Z. Overview on the recent study of antimicrobial peptides: origins, functions, relative mechanisms and application. Peptides. 2012;37:207–15.

    Article  CAS  PubMed  Google Scholar 

  10. Altincicek B, Linder M, Linder D, Preissner KT, Vilcinskas A. Microbial metalloproteinases mediate sensing of invading pathogens and activate innate immune responses in the lepidopteran model host Galleria mellonella. Infect Immun. 2007;75:175–83.

    Article  CAS  PubMed  Google Scholar 

  11. Zhao X, Wu H, Lu H, Li G, Huang QLAMP. A database linking antimicrobial Peptides. PLoS ONE. 2013;8:e66557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chan DI, Prenner EJ, Vogel HJ. Tryptophan-and arginine-rich antimicrobial peptides: structures and mechanisms of action. Biochim Biophys Acta. 2006;1758:1184–202.

    Article  CAS  PubMed  Google Scholar 

  13. Otvos L Jr. Antibacterial peptides and proteins with multiple cellular targets. J Pept Sci. 2005;11:697–706.

    Article  CAS  PubMed  Google Scholar 

  14. Maróti G, Kereszt A, Kondorosi E, Mergaert P. Natural roles of antimicrobial peptides in microbes, plants and animals. Res Microbiol. 2011;162:363–74.

    Article  CAS  PubMed  Google Scholar 

  15. Mihajlovic M, Lazaridis T. Antimicrobial peptides bind more strongly to membrane pores. Biochim Biophys Acta. 2010;1798:1494–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Palm C, Netzereab S, Hällbrink M. Quantitatively determined uptake of cell-penetrating peptides in non-mammalian cells with an evaluation of degradation and antimicrobial effects. Peptides. 2006;27:1710–6.

    Article  CAS  PubMed  Google Scholar 

  17. Habermann E. Bee and wasp venoms. Science. 1972;177:314–22.

    Article  CAS  PubMed  Google Scholar 

  18. Steiner H, Hultmark D, Engström Å, Bennich H, Boman HG. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature. 1981;292:246–8.

    Article  CAS  PubMed  Google Scholar 

  19. Moore AJ, Beazley WD, Bibby MC, Devine DA. Antimicrobial activity of cecropins. J Antimicrob Chemother. 1996;37:1077–89.

    Article  CAS  PubMed  Google Scholar 

  20. Sengupta D, Leontiadou H, Mark AE, Marrink S‑J. Toroidal pores formed by antimicrobial peptides show significant disorder. Biochim Biophys Acta. 2008;1778:2308–17.

    Article  CAS  PubMed  Google Scholar 

  21. Melo MN, Ferre R, Castanho MARB. Antimicrobial peptides: Linking partition, activity and high membrane-bound concentrations. Nat Rev Microbiol. 2009;7:245–50.

    Article  CAS  PubMed  Google Scholar 

  22. Efimova SS, Schagina LV, Ostroumova OS. Channel-forming activity of cecropins in lipid bilayers: effect of agents modifying the membrane dipole potential. Langmuir. 2014;30:7884–92.

    Article  CAS  PubMed  Google Scholar 

  23. Raghuraman H, Chattopadhyay A. Cholesterol inhibits the lytic activity of melittin in erythrocytes. Chem Phys Lipids. 2005;134:183–9.

    Article  CAS  PubMed  Google Scholar 

  24. Bland JM, De Lucca AJ. Identification of cecropin A proteolytic cleavage sites resulting from Aspergillus flavus extracellular protease(s). J Agric Food Chem. 1998;46:5324–7.

    Article  CAS  Google Scholar 

  25. Giacometti A, Cirioni O, Kamysz W, D’Amato G, Silvestri C, Del Prete MS, et al. Comparative activities of cecropin A, melittin, and cecropin A‑melittin peptide CA(1-7)M(2-9)NH2 against multidrug-resistant nosocomial isolates of Acinetobacter baumannii. Peptides. 2003;24:1315–8.

    Article  CAS  PubMed  Google Scholar 

  26. Yevtushenko DP, Romero R, Forward BS, Hancock RE, Kay WW, Misra S. Pathogen-induced expression of a cecropin A‑melittin antimicrobial peptide gene confers antifungal resistance in transgenic tobacco. J Exp Bot. 2005;56:1685–95.

    Article  CAS  PubMed  Google Scholar 

  27. Cavallarin L, Andreu D, San Segundo B. Cecropin A—derived peptides are potent inhibitors of fungal plant pathogens. Mol Plant Microbe Interact. 1998;11:218–27.

    Article  CAS  PubMed  Google Scholar 

  28. Badosa E, Ferre R, Planas M, Feliu L, Besalú E, Cabrefiga J, et al. A library of linear undecapeptides with bactericidal activity against phytopathogenic bacteria. Peptides. 2007;28:2276–85.

    Article  CAS  PubMed  Google Scholar 

  29. Que X, Reed L. Nucleotide sequence of a small subnit ribosomal RNA (16S-like rRNA) gene from Entamoeba histolytica: Differntiation of pathogenic from nonpathogenic isolates. Nucleic Acids Res. 1991;19:5438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Robinson G. Laboratory cultivation of some human parasitic amoebae. Microbiology. 1968;53:69–79.

    CAS  Google Scholar 

  31. Diamond LS, Harlow DR, Cunnick CC. A new medium for the axenic cultivation of entamoeba histolytica and other entamoeba. Trans R Soc Trop Med Hyg. 1978;72:431–2.

    Article  CAS  PubMed  Google Scholar 

  32. Strober W. Trypan blue exclusion test of cell viability. Curr Protoc Immunol. 2015;111:A3‑B.

    Google Scholar 

  33. Dobiáš L, Černá M, Rössner P, Šrám R. Genotoxicity and carcinogenicity of metronidazole. Mutat Res Genet Toxicol. 1994;317:177–94.

    Article  Google Scholar 

  34. Roe FJC. Toxicologic evaluation of metronidazole with particular reference to carcinogenic, mutagenic, and teratogenic potential. Surgery. 1983;93:158–64.

    CAS  PubMed  Google Scholar 

  35. Bonin-Debs AL, Boche I, Gille H, Brinkmann U. Development of secreted proteins as biotherapeutic agents. Expert Opin Biol Ther. 2004;4:551–8.

    Article  CAS  PubMed  Google Scholar 

  36. Ranganathan S, Secretome GG. Clues into pathogen infection and clinical applications. Genome Med. 2009;1:113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Leippe M, Andrä J, Nickel R, Tannich E, Muller-Eberhard HJ. Amoebapores, a family of membranolytic peptides from cytoplasmic granules of Entamoeba histolytica: isolation, primary structure, and pore bacterial cytoplasmic membranes. Mol Microbiol. 1994;14:895–904.

    Article  CAS  PubMed  Google Scholar 

  38. Leippe M, Andrä J, Müller-Eberhard HJ. Cytolytic and antibacterial activity of synthetic peptides derived from amoebapore, the pore-forming peptide of Entamoeba histolytica. Proc Natl Acad Sci Usa. 1994;29:2602–6.

    Article  Google Scholar 

  39. Lai Y, Gallo RL. AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol. 2009;30:131–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Steckbeck JD, Deslouches B, Montelaro RC. Antimicrobial peptides: new drugs for bad bugs? Expert Opin Biol Ther. 2014;14:11–4.

    Article  CAS  PubMed  Google Scholar 

  41. Moghaddam MM, Barjini KA, Ramandi MF, Amani J. Investigation of the antibacterial activity of a short cationic peptide against multidrug-resistant Klebsiella pneumoniae and Salmonella typhimurium strains and its cytotoxicity on eukaryotic cells. World J Microbiol Biotechnol. 2014;30:1533–40.

    Article  CAS  PubMed  Google Scholar 

  42. Zasloff M. Antimicrobial peptides of multicellular organisms. Nature. 2002;415:389.

    Article  CAS  PubMed  Google Scholar 

  43. Sand SL, Nissen-Meyer J, Sand O, Haug TM. Plantaricin A, a cationic peptide produced by Lactobacillus plantarum, permeabilizes eukaryotic cell membranes by a mechanism dependent on negative surface charge linked to glycosylated membrane proteins. Biochim Biophys Acta. 2013;1828:249–59.

    Article  CAS  PubMed  Google Scholar 

  44. Brauchle E, Thude S, Brucker SY, Schenke-Layland K. Cell death stages in single apoptotic and necrotic cells monitored by Raman microspectroscopy. Sci Rep. 2014;15:4698.

    Google Scholar 

  45. Matsuzaki K. Why and how are peptide-lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes. Biochim Biophys Acta. 1999;1462:1–10.

    Article  CAS  PubMed  Google Scholar 

  46. Cornick S, Chadee K. Entamoeba histolytica: Host parasite interactions at the colonic epithelium. Tissue Barriers. 2017;5:e1283386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rico-Mata R, De Leon-Rodriguez LM, Avila EE. Effect of antimicrobial peptides derived from human cathelicidin LL-37 on Entamoeba histolytica trophozoites. Exp Parasitol. 2013;133:300–6.

    Article  CAS  PubMed  Google Scholar 

  48. Ji S, Li W, Baloch AR, Wang M, Li H, Cao B, et al. Efficient biosynthesis of a Cecropin A‑melittin mutant in Bacillus subtilis WB700. Sci Rep. 2017;7:40587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The study was supported by the Office of the Vice-Chancellor for Research and Technology, Faculty of Medical Sciences, Tarbiat Modares University, Parasitology and Entomology Department, Tehran, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Pirestani.

Ethics declarations

Conflict of interest

F. Mahdavi Abhari, M. Pirestani, and A. Dalimi declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahdavi Abhari, F., Pirestani, M. & Dalimi, A. Anti-amoebic activity of a cecropin-melittin hybrid peptide (CM11) against trophozoites of Entamoeba histolytica. Wien Klin Wochenschr 131, 427–434 (2019). https://doi.org/10.1007/s00508-019-01540-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00508-019-01540-9

Keywords

Navigation