Skip to main content
Log in

Advanced therapies of skin injuries

  • review article
  • Published:
Wiener klinische Wochenschrift Aims and scope Submit manuscript

Summary

The loss of tissue is still one of the most challenging problems in healthcare. Efficient laboratory expansion of skin tissue to reproduce the skins barrier function can make the difference between life and death for patients with extensive full-thickness burns, chronic wounds, or genetic disorders such as bullous conditions. This engineering has been initiated based on the acute need in the 1980s and today, tissue-engineered skin is the reality. The human skin equivalents are available not only as models for permeation and toxicity screening, but are frequently applied in vivo as clinical skin substitutes. This review aims to introduce the most important recent development in the extensive field of tissue engineering and to describe already approved, commercially available skin substitutes in clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zanger P. Staphylococcus aureus positive skin infections and international travel. Wien Klin Wochenschr. 2010;122(1):31–3.

    Article  PubMed  Google Scholar 

  2. Papini R. ABC of burns—management of burn injuries of various depths. Brit Med J. 2004;329(7458):158–60.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Miller SJ, Burke EM, Rader MD, Coulombe PA, Lavker RM. Re-epithelialization of porcine skin by the sweat apparatus. J Invest Dermatol. 1998;110(1):13–9.

    Article  CAS  PubMed  Google Scholar 

  4. Carter MJ, Tingley-Kelley K, Warriner RA III. Silver treatments and silver-impregnated dressings for the healing of leg wounds and ulcers: a systematic review and meta-analysis. J Am Acad Dermatol. 2010;63(4):668–79.

    Article  CAS  PubMed  Google Scholar 

  5. Pivec T, Peršin Z, Kolar M, Maver T, Dobaj A, Vesel A, Maver U, Stana-Kleinschek K. “Modification of cellulose non-woven substrates for preparation of modern wound dressings, ” Text Res J. 2014;84(1):96–112.

  6. Hackl F, Kiwanuka E, Philip J, Gerner P, Aflaki P, Diaz-Siso JR, Sisk G, Caterson EJ, Junker JP, Eriksson E. Moist dressing coverage supports proliferation and migration of transplanted skin micrografts in full-thickness porcine wounds. Burns. 2014;40(2):274–80.

    Article  PubMed  Google Scholar 

  7. Ovington LG. Wound care products: how to choose. Home Healthc Nurse. 2001;19(4):224–31.

    Article  CAS  PubMed  Google Scholar 

  8. Tan A, Gollop ND, Klimach SG, Maruthappu M, Smith SF. Should infected laparotomy wounds be treated with negative pressure wound therapy? Int J Surg. 2014;12(1):26–9.

    Article  CAS  PubMed  Google Scholar 

  9. Reed S, Wu B. Sustained growth factor delivery in tissue engineering applications. Ann Biomed Eng. 2014;42(7):1528–36.

    Article  PubMed  Google Scholar 

  10. Blitterswijk CAv, Thomsen P. Tissue engineering. London: Academic Press; 2008.

    Google Scholar 

  11. Davis JS. Address of the president: the story of plastic surgery. Ann Surg. 1941;113(5):641–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Akan M, Yildirim S, Misirlioglu A, Ulusoy G, Akoz T, Avci G. An alternative method to minimize pain in the split-thickness skin graft donor site. Plast Reconstr Surg. 2003;111(7):2243–9.

    Article  PubMed  Google Scholar 

  13. Andreassi A, Bilenchi R, Biagioli M, D’Aniello C. Classification and pathophysiology of skin grafts. Clin Dermatol. 2005;23(4):332–7.

    Article  PubMed  Google Scholar 

  14. Hermans MH. Porcine xenografts vs. (cryopreserved) allografts in the management of partial thickness burns: is there a clinical difference? Burns. 2014;40(3):408–15.

    Article  PubMed  Google Scholar 

  15. Langdon RC, Cuono CB, Birchall N, Madri JA, Kuklinska E, McGuire J, Moellmann GE. Reconstitution of structure and cell function in human skin grafts derived from cryopreserved allogeneic dermis and autologous cultured keratinocytes. J Invest Dermatol. 1988;91(5):478–85.

    Article  CAS  PubMed  Google Scholar 

  16. Langer R, Vacanti JP. Tissue engineering. Science. 1993;260(5110):920–6.

    Article  CAS  PubMed  Google Scholar 

  17. Shevchenko RV, James SL, James SE. A review of tissue-engineered skin bioconstructs available for skin reconstruction. J R Soc Interface. 2010;7(43):229–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sabolinski ML, Alvarez O, Auletta M, Mulder G, Parenteau NL. Cultured skin as a ‘smart material’ for healing wounds: experience in venous ulcers. Biomaterials. 1996;17(3):311–20.

    Article  CAS  PubMed  Google Scholar 

  19. Groeber F, Holeiter M, Hampel M, Hinderer S, Schenke-Layland K. Skin tissue engineering–in vivo and in vitro applications. Clin Plast Surg. 2012;39(1):33–58.

    Article  PubMed  Google Scholar 

  20. Lazic T, Falanga V. Bioengineered skin constructs and their use in wound healing. Plast Reconstr Surg. 2011;127 Suppl 1:75S–90S.

    Article  CAS  PubMed  Google Scholar 

  21. Chester DL, Balderson DS, Papini RP. A review of keratinocyte delivery to the wound bed. J Burn Care Rehabil. 2004;25(3):266–75.

    Article  CAS  PubMed  Google Scholar 

  22. Green H, Kehinde O, Thomas J. Growth of cultured human epidermal cells into multiple epithelia suitable for grafting. Proc Natl Acad Sci. 1979;76(11):5665–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Notara M, Bullett NA, Deshpande P, Haddow DB, MacNeil S, Daniels JT. Plasma polymer coated surfaces for serum-free culture of limbal epithelium for ocular surface disease. J Mater Sci Mater Med. 2007;18(2):329–38.

    Article  CAS  PubMed  Google Scholar 

  24. Gallico GG III, O’Connor NE, Compton CC, Kehinde O, Green H. Permanent coverage of large burn wounds with autologous cultured human epithelium. N Engl J Med. 1984;311(7):448–51.

    Article  PubMed  Google Scholar 

  25. Odessey R. Addendum: multicenter experience with cultured epidermal autograft for treatment of burns. J Burn Care Rehabil. 1992;13(1):174–80.

    Article  CAS  PubMed  Google Scholar 

  26. Williamson JS, Snelling CF, Clugston P, Macdonald IB, Germann E. Cultured epithelial autograft: five years of clinical experience with twenty-eight patients. J Trauma. 1995;39(2):309–19.

    Article  CAS  PubMed  Google Scholar 

  27. MacNeil S. Progress and opportunities for tissue-engineered skin. Nature. 2007;445(7130):874–80.

    Article  CAS  PubMed  Google Scholar 

  28. Andree C, Reimer C, Page CP, Slama J, Stark BG, Eriksson E. Basement membrane formation during wound healing is dependent on epidermal transplants. Plast Reconstr Surg. 2001;107(1):97–104.

    Article  CAS  PubMed  Google Scholar 

  29. Wood FM, Kolybaba ML, Allen P. The use of cultured epithelial autograft in the treatment of major burn injuries: a critical review of the literature. Burns. 2006;32(4):395–401.

    Article  CAS  PubMed  Google Scholar 

  30. Ronfard V, Rives JM, Neveux Y, Carsin H, Barrandon Y. Long-term regeneration of human epidermis on third degree burns transplanted with autologous cultured epithelium grown on a fibrin matrix. Transplantation. 2000;70(11):1588–98.

    Article  CAS  PubMed  Google Scholar 

  31. Hernon CA, Dawson RA, Freedlander E, Short R, Haddow DB, Brotherston M, MacNeil S. Clinical experience using cultured epithelial autografts leads to an alternative methodology for transferring skin cells from the laboratory to the patient. Regen Med. 2006;1(6):809–21.

    Article  PubMed  Google Scholar 

  32. Damanhuri M, Boyle J, Enoch S. Advances in tissue-engineered skin substitutes. Wounds Int. 2011;2(1):4.

    Google Scholar 

  33. Huang S, Xiaobing F. Tissue-engineered skin: bottleneck or breakthrough. Int J Burns Trauma. 2011;1(1):10.

    Google Scholar 

  34. Orgill DP, Butler C, Regan JF, Barlow MS, Yannas IV, Compton CC. Vascularized collagen-glycosaminoglycan matrix provides a dermal substrate and improves take of cultured epithelial autografts. Plast Reconstr Surg. 1998;102(2):423–9.

    Article  CAS  PubMed  Google Scholar 

  35. Rehim SA, Singhal M, Chung KC. Dermal skin substitutes for upper limb reconstruction: current status, indications, and contraindications. Hand Clin. 2014;30(2):239–52,vii.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lattari V, Jones LM, Varcelotti JR, Latenser BA, Sherman HF, Barrette RR. The use of a permanent dermal allograft in full-thickness burns of the hand and foot: a report of three cases. J Burn Care Rehabil. 1997;18(2):147–55.

    Article  CAS  PubMed  Google Scholar 

  37. Shakespeare PG. The role of skin substitutes in the treatment of burn injuries. Clin Dermatol. 2005;23(4):413–8.

    Article  PubMed  Google Scholar 

  38. Callcut RA, Schurr MJ, Sloan M, Faucher LD. Clinical experience with alloderm: a one-staged composite dermal/epidermal replacement utilizing processed cadaver dermis and thin autografts. Burns. 2006;32(5):583–8.

    Article  CAS  PubMed  Google Scholar 

  39. Macleod T, Williams G, Sanders R, Green C. Histological evaluation of Permacol as a subcutaneous implant over a 20-week period in the rat model. Br J Plast Surg. 2005;58(4):518–32.

    Article  CAS  PubMed  Google Scholar 

  40. Yannas I, Burke J, Orgill D, Skrabut E. Wound tissue can utilize a polymeric template to synthesize a functional extension of skin. Science. 1982;215(4529):174–6.

    Article  CAS  PubMed  Google Scholar 

  41. Heimbach D, Luterman A, Burke J, Cram A, Herndon D, Hunt J, Jordan M, McManus W, Solem L, Warden G, et al. Artificial dermis for major burns. A multi-center randomized clinical trial. Ann Surg. 1988;208(3):313–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Anthony ET, Syed M, Myers S, Moir G, Navsaria H. The development of novel dermal matrices for cutaneous wound repair. Drug Discov Today: Ther Strateg. 2006;3(1):81–6.

    Google Scholar 

  43. Cooper ML, Hansbrough JF, Polarek JW. The effect of an arginine-glycine-aspartic acid peptide and hyaluronate synthetic matrix on epithelialization of meshed skin graft interstices. J Burn Care Rehabil. 1996;17(2):108–16.

    Article  CAS  PubMed  Google Scholar 

  44. Hansbrough JF, Boyce ST, Cooper ML, Foreman TJ. Burn wound closure with cultured autologous keratinocytes and fibroblasts attached to a collagen-glycosaminoglycan substrate. JAMA. 1989;262(15):2125–30.

    Article  CAS  PubMed  Google Scholar 

  45. Gravante G, Delogu D, Giordan N, Morano G, Montone A, Esposito G. The use of Hyalomatrix PA in the treatment of deep partial-thickness burns. J Burn Care Res. 2007;28(2):269–74.

    Article  PubMed  Google Scholar 

  46. Kempf M, Miyamura Y, Liu PY, Chen AC, Nakamura H, Shimizu H, Tabata Y, Kimble RM, McMillan JR. A denatured collagen microfiber scaffold seeded with human fibroblasts and keratinocytes for skin grafting. Biomaterials. 2011;32(21):4782–92.

    Article  CAS  PubMed  Google Scholar 

  47. Lal S, Barrow RE, Wolf SE, Chinkes DL, Hart DW, Heggers JP, Herndon DN. Biobrane improves wound healing in burned children without increased risk of infection. Shock. 2000;14(3):314–8. (discussion 318–9).

    Article  CAS  PubMed  Google Scholar 

  48. Supp DM, Boyce ST. Engineered skin substitutes: practices and potentials. Clin Dermatol. 2005;23(4):403–12.

    Article  PubMed  Google Scholar 

  49. Wilkins LM, Watson SR, Prosky SJ, Meunier SF, Parenteau NL. Development of a bilayered living skin construct for clinical applications. Biotechnol Bioeng. 1994;43(8):747–56.

    Article  CAS  PubMed  Google Scholar 

  50. Griffiths M, Ojeh N, Livingstone R, Price R, Navsaria H. Survival of Apligraf in acute human wounds. Tissue Eng. 2004;10(7/8):1180–95.

    Article  CAS  PubMed  Google Scholar 

  51. Still J, Glat P, Silverstein P, Griswold J, Mozingo D. The use of a collagen sponge/living cell composite material to treat donor sites in burn patients. Burns. 2003;29(8):837–41.

    Article  PubMed  Google Scholar 

  52. El-Ghalbzouri A, Lamme EN, van Blitterswijk C, Koopman J, Ponec M. The use of PEGT/PBT as a dermal scaffold for skin tissue engineering. Biomaterials. 2004;25(15):2987–96.

    Article  CAS  PubMed  Google Scholar 

  53. Uccioli L. A clinical investigation on the characteristics and outcomes of treating chronic lower extremity wounds using the tissuetech autograft system. Int J Low Extrem Wounds. 2003;2(3):140–51.

    Article  CAS  PubMed  Google Scholar 

  54. Wood FM, Stoner ML, Fowler BV, Fear MW. The use of a non-cultured autologous cell suspension and Integra® dermal regeneration template to repair full-thickness skin wounds in a porcine model: a one-step process. Burns. 2007;33(6):693–700.

    Article  PubMed  Google Scholar 

  55. Compton CC, Butler CE, Yannas IV, Warland G, Orgill DP. Organized skin structure is regenerated in vivo from collagen-GAG matrices seeded with autologous keratinocytes. J Invest Dermatol. 1998;110(6):908–16.

    Article  CAS  PubMed  Google Scholar 

  56. Stein E, Blaimauer K, Bauer S, Erovic BM, Turhani D, Thurnher D. High expression of integrin β1 correlates with high proliferation capacity in oral keratinocytes. Wien Klin Wochenschr. 2007;119(9–10):318–22.

    Article  CAS  PubMed  Google Scholar 

  57. Stein E, Koehn J, Sutter W, Wendtlandt G, Wanschitz F, Thurnher D, Baghestanian M, Turhani D. Initial effects of low-level laser therapy on growth and differentiation of human osteoblast-like cells. Wien Klin Wochenschr. 2008;120(3–4):112–7.

    Article  CAS  PubMed  Google Scholar 

  58. Vesenjak M, Matela J, Young P, Said R, Ren Z. Imaging, virtual reconstruction and computational material (tissue) testing. Acta Medico-Biotehnica. 2009;2:19–30.

    Google Scholar 

  59. Tonello C, Vindigni V, Zavan B, Abatangelo S, Abatangelo G, Brun P, Cortivo R. In vitro reconstruction of an endothelialized skin substitute provided with a microcapillary network using biopolymer scaffolds. FASEB J. 2005;19(11):1546–8.

    CAS  PubMed  Google Scholar 

  60. Chen M, Przyborowski M, Berthiaume F. Stem cells for skin tissue engineering and wound healing. Crit Rev Biomed Eng. 2009;37(4–5):399–421.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Furumoto T, Ozawa N, Inami Y, Toyoshima M, Fujita K, Zaiki K, Sahara S, Akita M, Kitamura K, Nakaoji K, Hamada K, Tamai K, Kaneda Y, Maeda A. Mallotus philippinensis bark extracts promote preferential migration of mesenchymal stem cells and improve wound healing in mice. Phytomedicine. 2014;21(3):247–53.

    Article  PubMed  Google Scholar 

  62. Plikus MV, Gay DL, Treffeisen E, Wang A, Supapannachart RJ, Cotsarelis G. Epithelial stem cells and implications for wound repair. Semin Cell Dev Biol. 2012;23(9):946–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The paper was co-produced within the framework of the operation entitled “Centre of Open innovation and ResEarch UM (CORE@UM)”. The operation is co-funded by the European Regional Development Fund and conducted within the framework of the Operational Program for Strengthening Regional Development Potentials for the period 2007–2013, development priority 1: “Competitiveness of companies and research excellence”, priority axis 1.1: “Encouraging competitive potential of enterprises and research excellence”, contact No. 3330-13-500032. The authors also acknowledge the financial support from the Ministry of Higher Education, Science and Technology of the Republic of Slovenia, as well as the financial contributions from the mnt-era.net funded project WoundSens with the grant number 3211-12-00002.

Conflict of interest

The authors report no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uroš Maver PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maver, T., Maver, U., Kleinschek, K. et al. Advanced therapies of skin injuries. Wien Klin Wochenschr 127 (Suppl 5), 187–198 (2015). https://doi.org/10.1007/s00508-015-0859-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00508-015-0859-7

Keywords

Navigation