Skip to main content
Log in

Increased proinflammatory cytokine production in adipose tissue of obese patients with chronic kidney disease

Erhöhte Expression von proinflammatorischen Zytokinen im Fettgewebe von adipösen Patienten mit chronischer Niereninsuffizienz

  • Original article
  • Published:
Wiener klinische Wochenschrift Aims and scope Submit manuscript

Zusammenfassung

HINTERGRUND: Die Adipositas ist ein Hochrisikofaktor sowohl für die Entwicklung von Gefäßerkrankungen als auch für chronische Niereninsuffizienz (CKD). Ziel dieser Studie ist es, den Einfluss des Fettgewebes auf den Entzündungsstatus bei adipösen Patienten mit CDK zu erfassen. PATIENTEN UND METHODEN: In einer prospektiven Querschnitt-Studie analysierten wir 40 CDK (Stadium 3–4) Patienten mit milder Proteinurie (2,3–3,5 g/Tag): 20 Patienten mit Adipositas (Gruppe 1) und 20 normalgewichtigen Patienten (Gruppe 2) wurde während einer elektiven Abdominaloperation (laparoskopische Cholecystektomie) einmalig Blut abgenommen, sowie Proben des subkutanen und des viszeralen Fettgewebes entnommen. Die Serumkonzentrationen folgender Parameter wurden bestimmt: Asymmetrisches Dimethylarginin (ADMA), Adiponektin (ADPN), C-reaktives Protein (CRP), Interleukin-6-(IL-6), Tumor Nekrose Faktor-α (TNF-α), Pentosidin, Monocyte Chemoattractant Protein-1 (MCP-1). Mit Hilfe von Real-Time-PCR wurde die Expression der Messenger RNA (mRNA) von TNF-α, MCP-1 und der Adiponektin Rezeptoren 1 und 2 sowie des immunkompetenten Zellmarkers CD68 im subkutanen sowie im viszeralen Fettgewebe bestimmt. Das Fettgewebe wurde immunhistochemisch auf CD68 positive Zellen geprüft. Außerdem wurden in beiden Gruppen folgende weitere biochemische Parameter bestimmt: Insulin, HbA1c, Cholesterin, LDL-Cholesterin, und Triglyzeride. ERGEBNISSE: Die Serumkonzentrationen von ADMA, CRP, Pentosidin, Interleukin-6, TNF-α, and MCP-1 waren bei den adipösen CDK-Patienten signifikant höher. Das Adiponektin war signifikant im Vergleich zur Kontrollgruppe erniedrigt. Die subkutane und viszerale mRNA Expression von TNF-α, CD68, Adiponektin Rezeptor-1 and MCP-1 war bei den adipösen CDK Patienten signifikant erhöht. Die mRNA Expressionen waren im viszeralen Fettgewebe signifikant höher als im subkutanen Fettgewebe (p < 0,01 vs. p < 0,05). Die Expressionen der mRNA von Adiponektin, Interleukin-6, und des Adiponektin Rezeptors-2 beider Fettdepots waren nicht unterschiedlich in den beiden Gruppen. Bei den adipösen CDK-Patienten wurde im subkutanen und im viszeralen Fettgewebe eine erhöhte Infiltration mit CD68 positiven immunkompetenten Zellen gefunden. Die Fettstoffwechsel-Parameter waren in der Gruppe 1 gering, aber signifikant (p < 0,02) erhöht. Ausgeprägter waren die Veränderungen in den Triglyzeriden (p < 0,01). Ein ähnlicher Anstieg wurde bei den Insulin und HbA1c Werten der Gruppe 1 beobachtet (p < 0,02). SCHLUSSFOLGERUNGEN: Im Fettgewebe adipöser Patienten mit CKD im Stadium 3–4 wurde eine erhöhte Expression von proinflammatorischen Zytokinen und eine gesteigerte Infiltration mit immunkompetenten Zellen gefunden. Diese hinauf-regulierte Entzündung könnte zur Auslösung eines systemischen proinflammatorischen Zustands bei Patienten mit CDK beitragen und das Fortschreiten der Störung der Nierenfunktion beschleunigen.

Summary

BACKGROUND: Obesity is a known high-risk factor for the development of vascular diseases and chronic kidney disease (CKD). In this study we aimed to elucidate the impact of adipose tissue on the inflammatory state in CDK patients with obesity. PATIENTS AND METHODS: A cohort of 40 patients with CKD (stages 3–4) with mild proteinuria (2.3–3.5 g/day) were analyzed in a prospective cross-sectional study: single blood samples and visceral and subcutaneous samples of adipose tissue were taken from 20 patients with obesity and 20 without obesity (control group) during elective abdominal surgery (laparoscopic cholecystectomy). Serum concentrations of asymmetric dimethylarginine (ADMA), adiponectin, C-reactive protein, interleukin-6, tumor necrosis factor-α, pentosidine and monocyte chemoattractant protein-1 were measured. Messenger RNA expression of tumor necrosis factor-α, monocyte chemoattractant protein-1, adiponectin receptors 1 and 2, and immunocompetent cell marker CD68 was measured in subcutaneous and visceral fat samples using real-time PCR. Adipose tissue was examined immunohistochemically for CD68-positive cells. Other biochemical parameters (insulin, glycated hemoglobin, cholesterol, LDL cholesterol, and triglycerides) were assessed in the two groups of patients at the same time. RESULTS: Serum concentrations of ADMA, C-reactive protein, pentosidine, interleukin-6, tumor necrosis factor-α and monocyte chemoattractant protein-1 were significantly higher in obese CKD patients than in the control group; adiponectin was lower in the obese group. Subcutaneous and visceral mRNA expressions of tumor necrosis factor-α, CD68, adiponectin receptor-1, and monocyte chemoattractant protein-1 were significantly increased in the obese patients, whereas expression of adiponectin, interleukin-6, and adiponectin receptor-2 did not significantly differ between the patient groups. In general, mRNA expressions were higher in visceral than in subcutaneous samples (P < 0.01 vs. P < 0.05). Increased infiltration of subcutaneous and visceral adipose tissue by CD68-positive immunocompetent cells was found in the obese CKD group. With respect to lipid metabolism parameters, a small but significant increase in levels was found in the obese patients (P < 0.02). Changes in triglycerides were more marked in this group (P < 0.01) and a similar increase was noted in insulin and HbA1c levels (P < 0.02). CONCLUSION: Increased expression of proinflammatory cytokines and increased infiltration by immunocompetent cells were found in adipose tissue of obese patients with CKD stages 3–4. This upregulated inflammation may contribute to the induction of a systemic proinflammatory state in patients with CKD and could accelerate the progression of renal dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Curat CA, Wegner V, Sengenes C, Miranville A, Tonus C, Busse R, Bouloumie A (2006) Macrophages in human visceral adipose tissue: increased accumulation in obesity and a source of resistin and visfatin. Diabetologia 49: 744–7

    Article  CAS  PubMed  Google Scholar 

  • Neels JG, Olefsky JM (2006) Inflamed fat: what starts the fire? J Clin Invest 116: 33–5

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, et al (2003) Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 112: 1821–30

    CAS  PubMed  Google Scholar 

  • Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112: 1796–808

    CAS  PubMed  Google Scholar 

  • Wellen KE, Hotamisligil GS (2005) Inflammation, stress, and diabetes. J Clin Invest 115: 1111–9

    CAS  PubMed  Google Scholar 

  • Gorden P, Park JY (2006) The clinical efficacy of the adipocyte-derived hormone leptin in metabolic dysfunction. Arch Physiol Biochem 112: 114–8

    Article  CAS  PubMed  Google Scholar 

  • Oral EA, Simha V, Ruiz E, Andewelt A, Premkumar A, Snell P, et al (2002) Leptin-replacement therapy for lipodystrophy. N Engl J Med 346: 570–8

    Article  CAS  PubMed  Google Scholar 

  • Petersen KF, Oral EA, Dufour S, Befroy D, Ariyan C, Yu C, et al (2002) Leptin reverses insulin resistance and hepatic steatosis in patients with severe lipodystrophy. J Clin Invest 109: 1345–50

    CAS  PubMed  Google Scholar 

  • Kubota N, Terauchi Y, Yamauchi T, Kubota T, Moroi M, Matsui J, et al (2002) Disruption of adiponectin causes insulin resistance and neointimal formation. J Biol Chem 277: 25863–6

    Article  CAS  PubMed  Google Scholar 

  • Javor ED, Ghany MG, Cochran EK, Oral EA, DePaoli AM, Premkumar A, et al (2005) Leptin reverses nonalcoholic steatohepatitis in patients with severe lipodystrophy. Hepatology 41: 753–60

    Article  CAS  PubMed  Google Scholar 

  • Toyoshima Y, Gavrilova O, Yakar S, Jou W, Pack S, Asghar Z, et al (2005) Leptin improves insulin resistance and hyperglycemia in a mouse model of type 2 diabetes. Endocrinology 146: 4024–35

    Article  CAS  PubMed  Google Scholar 

  • Yao Q, Pecoits-Filho R, Lindholm B, Stenvinkel P (2004) Traditional and non-traditional risk factors as contributors to atherosclerotic cardiovascular disease in end-stage renal disease. Scand J Urol Nephrol 38: 405–16

    Article  PubMed  Google Scholar 

  • Yao Q, Axelsson J, Heimburger O, Stenvinkel P, Lindholm B (2004) Systemic inflammation in dialysis patients with end-stage renal disease: causes and consequences. Minerva Urol Nefrol 56: 237–48

    CAS  PubMed  Google Scholar 

  • Stenvinkel P (2001) Malnutrition and chronic inflammation as risk factors for cardiovascular disease in chronic renal failure. Blood Purif 19: 143–51

    Article  CAS  PubMed  Google Scholar 

  • Stenvinkel P (2001) Inflammatory and atherosclerotic interactions in the depleted uremic patient. Blood Purif 19: 53–61

    Article  CAS  PubMed  Google Scholar 

  • Kremen J, Dolinkova M, Krajickova J, Blaha J, Anderlova K, Lacinova Z, et al (2006) Increased subcutaneous and epicardial adipose tissue production of proinflammatory cytokines in cardiac surgery patients: possible role in postoperative insulin resistance. J Clin Endocrinol Metab 91: 4620–7

    Article  CAS  PubMed  Google Scholar 

  • Mazurek T, Zhang L, Zalewski A, Mannion JD, Diehl JT, Arafat H, et al (2003) Human epicardial adipose tissue is a source of inflammatory mediators. Circulation 108: 2460–6

    Article  PubMed  Google Scholar 

  • Böger RH, Zoccali C (2003) ADMA: novel risk factor that explains cardiovascular event rate in patients with end-stage renal disease. Atherosclerosis 4[Suppl 4]: 23–8

    PubMed  Google Scholar 

  • Mc Laughlin, T, Stühlinger M, Lamendola C, Abbasi F, Bialek J, Reaven GM, et al (2006) Plasma asymmetric dimethylarginine concentrations are elevated in obese insulin-resistant women and fall with weight loss. J Clin Endocrinol Metab 91: 1896–900

    Article  CAS  Google Scholar 

  • Krzyzanowska K, Mittermayer F, Kopp H-P, Wolzt M, Schernthaner G (2004) Weight loss reduces circulating asymmetrical dimethylarginine concentration in morbidly obese women. J Clin Endocrinol Metab 89: 6277–81

    Article  CAS  PubMed  Google Scholar 

  • Schück O (1984) Examination of kidney function. Martinus Nijhoff Publ, Amsterdam

    Google Scholar 

  • Hotamisligil GS, Arner P, Caro JF, Atkinson RL, Spiegelman BM (1995) Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest 95: 2409–15

    Article  CAS  PubMed  Google Scholar 

  • Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM, et al (2001) The hormone resistin links obesity to diabetes. Nature 409: 307–12

    Article  CAS  PubMed  Google Scholar 

  • McTernan PG, McTernan CL, Chetty R, Jenner K, Fisher FM, Lauer MN, et al (2002) Increased resistin gene and protein expression in human abdominal adipose tissue. J Clin Endocrinol Metab 87: 2407

    Article  CAS  PubMed  Google Scholar 

  • Kusminski CM, McTernan PG, Kumar S (2005) Role of resistin in obesity, insulin resistance and type II diabetes. Clin Sci (Lond) 109: 243–56

    Article  CAS  Google Scholar 

  • Yuan M, Konstantopoulos N, Lee J, Hansen L, Li ZW, Karin M, Shoelson SE (2001) Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of IKKbeta. Science 293: 1673–7

    Article  CAS  PubMed  Google Scholar 

  • Esposito K, Ciotola M, Carleo D, Schisano B, Saccomanno F, Sasso FC, et al (2006) Effect of rosiglitazone on endothelial function and inflammatory markers in patients with the metabolic syndrome. Diabetes Care 29: 1071–6

    Article  CAS  PubMed  Google Scholar 

  • Tsuchida A, Yamauchi T, Takekawa S, Hada Y, Ito Y, Maki T, Kadowaki T (2005) Peroxisome proliferator-activated receptor (PPAR)alpha activation increases adiponectin receptors and reduces obesity related inflammation in adipose tissue: comparison of activation of PPARalpha, PPARgamma, and their combination. Diabetes 54: 3358–70

    Article  CAS  PubMed  Google Scholar 

  • Baker AR, Silva NF, Quinn DW, Harte AL, Pagano D, Bonser RS, et al (2006) Human epicardial adipose tissue expresses a pathogenic profile of adipocytokines in patients with cardiovascular disease. Cardiovasc Diabetol 5: 1

    Article  PubMed  Google Scholar 

  • Roubicek T, Dolinkova M, Blaha J, Haluzikova D, Bosanska L, Mraz M, et al (2008) Increased angiotensinogen production in epicardial adipose tissue during cardiac surgery: possible role in a postoperative insulin resistance. Physiol Res 57: 911–7

    CAS  PubMed  Google Scholar 

  • Harper CR, Jacobson TA (2008) Managing dyslipidemia in chronic kidney disease. J Am Coll Cardiol 51: 2375–84

    Article  CAS  PubMed  Google Scholar 

  • Sniderman A, Vu H, Cianflone K (1991) Effect of moderate hypertriglyceridemia on the relation of plasma total and LDL apo B levels. Atherosclerosis 89: 109–16

    Article  CAS  PubMed  Google Scholar 

  • Dandona P (2008) Effects of antidiabetic and antihyperlipidemic agents on C-reactive protein. Mayo Clin Proc 83: 333–42

    Article  CAS  PubMed  Google Scholar 

  • Pickkers P, Hoedemaekers A, Netea MG, de Galan BE, Smits P, van derHoeven JG, et al (2004) Hypothesis: normalisation of cytokine dysbalance explains the favourable effects of strict glucose regulation in the critically ill. Neth J Med 62: 143–50

    CAS  PubMed  Google Scholar 

  • Becker B, Kronenberg F, Kielstein JT, Haller H, Morath C, Ritz E, et al (2005) Renal insulin resistance syndrome, adiponectin and cardiovascular events in patients with kidney disease: the mild and moderate kidney disease study. J Am Soc Nephrol 16: 1091–8

    Article  CAS  PubMed  Google Scholar 

  • Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J, et al (1999) Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun 257: 79–83

    Article  CAS  PubMed  Google Scholar 

  • Hotta K, Funahashi T, Arita Y, Takahashi M, Matsuda M, Okamoto Y, et al (2000) Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler Thromb Vasc Biol 20: 1595–9

    CAS  PubMed  Google Scholar 

  • Yang WS, Lee WJ, Funahashi T, Tanaka S, Matsuzawa Y, Chao CL, et al (2001) Weight reduction increases plasma levels of an adipose-derived anti-inflammatory protein, adiponectin. J Clin Endocrinol Metab 86: 3815–9

    Article  CAS  PubMed  Google Scholar 

  • Housova J, Anderlova K, Krizova J, Haluzikova D, Kremen J, Kumstyrova T, et al (2005) Serum adiponectin and resistin concentrations in patients with restrictive and binge/purge form of anorexia nervosa and bulimia nervosa. J Clin Endocrinol Metab 90: 1366–70

    Article  CAS  PubMed  Google Scholar 

  • Pajvani UB, Hawkins M, Combs TP, Rajala MW, Doebber T, Berger JP, et al (2004) Complex distribution, not absolute amount of adiponectin, correlates with thiazolidinedione-mediated improvement in insulin sensitivity. J Biol Chem 279: 12152–62

    Article  CAS  PubMed  Google Scholar 

  • Roubicek T, Bartlova M, Krajickova J, Haluzikova D, et al (2009) Increased production of proinflammatory cytokines in adipose tissue of patients with end-stage renal disease. Nutrition 25: 762–8

    Article  CAS  PubMed  Google Scholar 

  • Shen YY, Charlesworth JA, Kelly JJ, Loi KW, Peake PW (2007) Up-regulation of adiponectin, its isoforms and receptors in end-stage kidney disease. Nephrol Dial Transplant 22: 171–8

    Article  CAS  PubMed  Google Scholar 

  • Zoccali C, Kielstein J (2006) Asymmetric dimethylarginine: a new player in the pathogenesis of renal disease? Curr Opin Nephrol Hypertens 15: 314–20

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki H, Matsuoka H, Cooke JP, Usui M, Ueda S, Okuda S, et al (2000) Endogenous nitric oxide synthase inhibitor: a novel marker of atherosclerosis. Circulation 99: 1141–6

    Google Scholar 

  • Ito A, Tsao P, Adimoolam S, Kimoto M, Ogawa T, Cooke JP (1999) Novel mechanism for endothelial dysfunction: dysregulation of dimethylarginine dimethylaminohydrolase. Circulation 99: 3092–5

    CAS  PubMed  Google Scholar 

  • Caglar K, Yilmaz MI, Sonmez A, Cakir E, Kaya A, Acikel C, et al (2006) ADMA, proteinuria and insulin resistance in non-diabetic stage I chronic kidney disease. Kidney Int 70: 781–7

    Article  CAS  PubMed  Google Scholar 

  • Sciaqua A, Candigliota M, Ceravolo R, Scozzafava A, Sinopoli F, Corsonello A, et al (2003) Weight loss in combination in human obesity. Diabetes Care 26: 1673–8

    Article  Google Scholar 

  • Spoto B, Parlongo RM, Parlongo G, Zoccali C (2007) The enzymatic machinery for ADMA synthesis and degradation is fully expressed in human adipocytes. J Nephrol 20: 554–9

    PubMed  Google Scholar 

  • Paiva H, Lehtimaki T, Laakso J, Ruokonen I, Tervonen R, Metso S, et al (2004) Dietary composition as a determinant of plasma asymmetric dimethylarginine in subjects with hypercholesterolemia. Metabolism 53: 1072–5

    Article  CAS  PubMed  Google Scholar 

  • Teplan V, Schueck O, Racek J, Mareckova O, Stollova M, Hanzal V, et al (2008) Reduction of plasma asymmetric dimethylarginine in obese chronic kidney disease patients after three years of low-protein diet supplemented with keto-amino acids: a randomized controlled trial. Wien Klin Wochenschr 120: 478–85

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimír Teplan Jr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teplan, V., Vyhnánek, F., Gürlich, R. et al. Increased proinflammatory cytokine production in adipose tissue of obese patients with chronic kidney disease. Wien Klin Wochenschr 122, 466–473 (2010). https://doi.org/10.1007/s00508-010-1409-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00508-010-1409-y

Keywords

Navigation