Skip to main content
Log in

Porcine isosporosis: Infection dynamics, pathophysiology and immunology of experimental infections

Ferkelisosporose: Infektionsdynamik, Pathophysiologie und Immunologie experimenteller Infektionen

  • Review Article
  • Published:
Wiener klinische Wochenschrift Aims and scope Submit manuscript

Zusammenfassung

Isospora suis ist ein einzelliger Parasit des Schweins und der Erreger der Saugferkelkokzidiose. Diese Erkrankung zeigt eine hohe Morbidität in betroffenen Ferkelzuchtbetrieben und ist damit ein wichtiger wirtschaftlicher Faktor in der Schweineproduktion. Im Verlauf der Infektion wird die Schleimhaut des Dünndarmepithels in Jejunum und Ileum stark geschädigt, was zu charakteristischen unblutigen Durchfällen führt. Eine Folge der reduzierten Nährstoffaufnahme im so geschädigten Dünndarm sind verminderte Absetzgewichte und ein starkes Auseinanderwachsen der Würfe, zusätzlich können Sekundärinfektionen mit anderen Darmpathogenen die Mortalitätsrate erhöhen. Trotz der wirtschaftlichen und veterinärmedizinischen Bedeutung der Saugferkelkokzidiose sind die Interaktionen zwischen Wirt und Parasit bislang nur unzureichend aufgeklärt. Dieser Übersichtsartikel befasst sich mit dem Lebenszyklus von I. suis und den klinischen und parasitologischen Charakteristika der Saugferkelkokzidiose. Weiters werden verschiedene Modelle der experimentellen Infektion und etablierte in vitro-Methoden zur Erforschung von I. suis vorgestellt. Er gibt einen Überblick über die natürliche Altersresistenz gegen Infektionen mit I. suis, die Immunantwort verschiedener Wirte bei anderen Kokzidieninfektionen (Eimeria spp., Cryptosporidium muris) und eine Zusammenfassung der Besonderheiten des Immunsystems des Schweins und seiner Entwicklung in den ersten Lebenswochen.

Summary

Isospora suis, an intestinal protozoan parasite of swine, is the causative agent of neonatal coccidiosis, a disease with high morbidity in affected pig-breeding units and consequently of high economic importance. Infection leads to damage of the mucosal surface in the jejunum and ileum and to non-haemorrhagic diarrhoea. As a result, weight gain of piglets is reduced and secondary infections with other enteric pathogens may lead to increased mortality. Despite its economic and veterinary importance, host-parasite interactions are still poorly understood. To examine these interactions experimental infection models are established using outbred piglets infected with defined numbers of parasites on different days of life. This review discusses the life cycle of Isospora suis and the clinical and parasitological characteristics of porcine neonatal coccidiosis including pathology, and compare the different experimental infection models and the tools for studying Isospora suis in vitro. Moreover, it summarises findings about natural age resistance of pigs against infections with Isospora suis, our current knowledge about immune response to other coccidial infections, e.g. with Eimeria spp. in different hosts, and gives a short overview on peculiarities of the porcine immune system and its development in young animals which may play a role in porcine coccidiosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Biester HE, Murray C (1934) Studies in infectious enteritis of swine. VIII. Isospora suis n. sp. in swine. J Am Vet Med Assoc 85: 207–219

    Google Scholar 

  • Sangster LT, Stuart BP, Williams DJ, Bedell DM (1978) Coccidiosis associated with scours in baby pigs. Vet Med Small Anim Clin 73: 1317–1319

    PubMed  CAS  Google Scholar 

  • Stuart BP, Lindsay DS, Ernst JV, Acres SD (1979) Coccidiosis as a cause of scours in baby pigs. In: 2nd International Symposium on neonatal diarrhea in calves and pigs, 3–5 October, 1978, Saskatoon, Saskatchewan, Canada, pp 371–382

  • Lindsay DS, Stuart BP, Wheat BE, Ernst JV (1980) Endogenous development of the swine coccidium, Isospora suis Biester 1934. J Parasitol 66: 771–779

    Article  PubMed  CAS  Google Scholar 

  • Matuschka FR, Heydorn AO (1980) Die Entwicklung von Isospora suis Biester und Murray 1934 (Sporozoa : Coccidia : Eimeriidae) im Schwein. In: Herter K (ed) Zoologische Beiträge, vol 26. Duncker & Humblot, Berlin, pp405–476

  • Lindsay DS, Current WL, Ernst JV (1982) Sporogony of Isospora suis Biester, 1934 of swine. J Parasitol 68: 861–865

    Article  PubMed  CAS  Google Scholar 

  • Vitovec J, Koudela B (1990) Double alteration of the small intestine in conventional and gnotobiotic piglets experimentally infected with the coccidium Isospora suis (Apicomplexa, Eimeriidae). Folia Parasitol (Praha) 37: 21–33

    CAS  Google Scholar 

  • Mundt HC, Cohnen A, Daugschies A, Joachim A, Prosl H, Schmaschke R, et al (2005) Occurrence of Isospora suis in Germany, Switzerland and Austria. J Vet Med B Infect Dis Vet Public Health 52: 93–97

    PubMed  Google Scholar 

  • Mundt HC, Daugschies A, Joachim A (2007) Increased awareness of piglet coccidiosis. Pig Progress 1: 22–25

    Google Scholar 

  • Mundt HC, Joachim A, Becka M, Daugschies A (2006) Isospora suis: an experimental model for mammalian intestinal coccidiosis. Parasitol Res 98: 167–175

    Article  PubMed  Google Scholar 

  • Lindsay DS, Current WL, Taylor JR (1985) Effects of experimentally induced Isospora suis infection on morbidity, mortality, and weight gains in nursing pigs. Am J Vet Res 46: 1511–1512

    PubMed  CAS  Google Scholar 

  • Lindsay DS, Blagburn BL, Powe TA (1992) Enteric coccidial infections and coccidiosis in swine. Comp Cont Ed Pract Vet 14: 698–702

    Google Scholar 

  • Joachim A, Ruttkowski B, Zimmermann M, Daugschies A, Mundt HC (2004) Detection of Isospora suis (Biester and Murray 1934) in piglet faeces – comparison of microscopy and PCR. J Vet Med B Infect Dis Vet Public Health 51: 140–142

    PubMed  CAS  Google Scholar 

  • Mundt HC, Mundt-Wustenberg S, Daugschies A, Joachim A (2007) Efficacy of various anticoccidials against experimental porcine neonatal isosporosis. Parasitol Res 100: 401–411

    Article  PubMed  CAS  Google Scholar 

  • Koudela B, Vodstrcilova M, Klimes B, Vladik P, Vitovec J (1991) Use of the anticoccidial agent, tortrazuril (Baycox, Bayer) in coccidiosis in suckling pigs. Vet Med (Praha) 36: 657–663

    CAS  Google Scholar 

  • Stuart BP, Gosser HS, Allen CB, Bedell DM (1982) Coccidiosis in swine: dose and age response to Isospora suis. Can J Comp Med 46: 317–320

    PubMed  CAS  Google Scholar 

  • Harleman JH, Meyer RC (1985) Pathogenicity of Isospora suis in gnotobiotic and conventionalised piglets. Vet Rec 116: 561–565

    PubMed  CAS  Google Scholar 

  • Mundt HC, Joachim A, Daugschies A, Zimmermann M (2003) Population biology studies on Isospora suis in piglets. Parasitol Res 90 [Suppl 3]: 158–159

    Article  Google Scholar 

  • Vitovec J, Koudela B (1987) Pathology of natural isosporosis in nursing piglets. Folia Parasitol (Praha) 34: 199–204

    CAS  Google Scholar 

  • Niestrath M, Takla M, Joachim A, Daugschies A (2002) The role of Isospora suis as a pathogen in conventional piglet production in Germany. J Vet Med B Infect Dis Vet Public Health 49: 176–180

    PubMed  CAS  Google Scholar 

  • Stuart BP, Lindsay DS, Ernst JV, Gosser HS (1980) Isospora suis enteritis in piglets. Vet Pathol 17: 84–93

    PubMed  CAS  Google Scholar 

  • Harleman JH, Meyer RC (1984) Life cycle of Isospora suis in gnotobiotic and conventionalized piglets. Vet Parasitol 17: 27–39

    Article  PubMed  CAS  Google Scholar 

  • Baba E, Gaafar SM (1985) Interfering effect of Isospora suis infection on Salmonella typhimurium infection in swine. Vet Parasitol 17: 271–278

    Article  PubMed  CAS  Google Scholar 

  • Martineau GP, del Castillo J (2000) Epidemiological, clinical and control investigations on field porcine coccidiosis: clinical, epidemiological and parasitological paradigms? Parasitol Res 86: 834–837

    Article  PubMed  CAS  Google Scholar 

  • Maes D, Vyt P, Rabaeys P, Gevaert D (2007) Effects of toltrazuril on the growth of piglets in herds without clinical isosporosis. Vet J 173: 199–201

    Article  CAS  Google Scholar 

  • Sotiraki S, Roepstorff A, Murrell KD, Nielsen JP, Maddox-Hyttel C, Boes J, et al (2007) The effect of pen contamination level on intra-litter spread of Isospora suis infection under on-farm conditions. IPVS, Hamburg

  • Fayer R, Mahrt JL (1972) Development of Isospora canis (Protozoa; Sporozoa) in cell culture. Z Parasitenkd 38: 313–318

    Article  PubMed  CAS  Google Scholar 

  • Lindsay DS, Blagburn BL (1987) Development of Isospora suis from pigs in primary porcine and bovine cell cultures. Vet Parasitol 24: 301–304

    Article  PubMed  CAS  Google Scholar 

  • Lindsay DS, Blagburn BL, Toivio-Kinnucan M (1991) Ultrastructure of developing Isospora suis in cultured cells. Am J Vet Res 52: 471–473

    PubMed  CAS  Google Scholar 

  • Lindsay DS, Quick DP, Steger AM, Toivio-Kinnucan MA, Blagburn BL (1998) Complete development of the porcine coccidium Isospora suis Biester, 1934 in cell cultures. J Parasitol 84: 635–637

    Article  PubMed  CAS  Google Scholar 

  • Welter MW, Quick DP, Steger AM, Welter LM (1996) Vaccine Potential of a Plasmid Encoding for the Sporozoite Attachment Protein of Isospora suis. In: 14th IPVS Congress, 29-1-2007, Bologna, Italy, p 349

  • Peschke R, Ruttkowski B, Joachim A (2006) Etablierung einer In-Vitro-Kultur von Isospora suis. In: 22. Jahrestagung der Deutschen Gesellschaft für Parasitologie, Vienna

  • Lindsay DS, Current WL (1984) Complete development of Isopora suis of swine in chicken embryos. J Protozool 31: 152–155

    PubMed  CAS  Google Scholar 

  • Vetterling JM (1966) Prevalence of coccidia in swine from six localities in the United States. Cornell Vet 56: 155–166

    PubMed  CAS  Google Scholar 

  • Lindsay DS, Ernst JV, Current WL, Stuart BP, Stewart TB (1984) Prevalence of oocysts of Isospora suis and Eimeria spp. from sows on farms with and without a history of neonatal coccidiosis. J Am Vet Med Assoc 185: 419–421

    PubMed  CAS  Google Scholar 

  • Stuart BP, Sisk DB, Bedell DM, Gosser HS (1982) Demonstration of immunity against Isospora suis in swine. Vet Parasitol 9: 185–191

    Article  PubMed  CAS  Google Scholar 

  • Stuart BP, Lindsay DS (1986) Coccidiosis in swine. Vet Clin North Am Food Anim Pract 2: 455–468

    PubMed  CAS  Google Scholar 

  • Baekbo P, Christensen J, Henriksen SA, Nielsen K (1994) Attempts to induce colostral immunity against Isospora suis infections in piglets. In: Proc Int Pig Vet Soc Congr, Bangkok, Thailand

  • Taylor JR (1984) Immune response of pigs to Isospora suis (Apicomplexa, Eimeriidae). PhD-Thesis, Auburn University

  • Wakelin D, Rose M (1990) Immunity to coccidiosis. In: Long PL (ed) coccidiosis of man and domestic animals. CRC Press, Boca Raton, Fla. pp 281–306

    Google Scholar 

  • Yun CH, Lillehoj HS, Lillehoj EP (2000) Intestinal immune responses to coccidiosis. Dev Comp Immunol 24: 303–324

    Article  PubMed  CAS  Google Scholar 

  • Becker BA, Misfeldt ML (1993) Evaluation of the mitogen-induced proliferation and cell surface differentiation antigens of lymphocytes from pigs 1 to 30 days of age. J Anim Sci 71: 2073–2078

    PubMed  CAS  Google Scholar 

  • Schwager J, Schulze J (1997) Maturation of the mitogen responsiveness, and IL2 and IL6 production by neonatal swine leukocytes. Vet Immunol Immunopathol 57: 105–119

    Article  PubMed  CAS  Google Scholar 

  • Koudela B, Kucerova S (1999) Role of acquired immunity and natural age resistance on course of Isospora suis coccidiosis in nursing piglets. Vet Parasitol 82: 93–99

    Article  PubMed  CAS  Google Scholar 

  • Koudela B, Kucerova S (2000) Immunity against Isospora suis in nursing piglets. Parasitol Res 86: 861–863

    Article  PubMed  CAS  Google Scholar 

  • McDonald V (1999) Gut intraepithelial lymphocytes and immunity to Coccidia. Parasitol Today 15: 483–487

    Article  PubMed  CAS  Google Scholar 

  • Stuart BP, Bedell DM, Lindsay DS (1982) Coccidiosis in swine: a search for extraintestinal stages of Isospora suis. Vet Rec 110: 82–83

    PubMed  CAS  Google Scholar 

  • Lunney JK (1993) Characterization of swine leukocyte differentiation antigens. Immunol Today 14: 147–148

    Article  PubMed  CAS  Google Scholar 

  • Saalmüller A (1996) Characterization of swine leukocyte differentiation antigens. Immunol Today 17: 352–354

    Article  PubMed  Google Scholar 

  • Saalmüller A, Denham S, Haverson K, Davis B, Dominguez J, Pescovitz MD, et al (1996) The Second International Swine CD Workshop. Vet Immunol Immunopathol 54: 155–158

    Article  PubMed  Google Scholar 

  • Saalmüller A, Pauly T, Lunney JK, Boyd P, Aasted B, Sachs DH, et al (1998) Overview of the Second International Workshop to define swine cluster of differentiation (CD) antigens. Vet Immunol Immunopathol 60: 207–228

    Article  PubMed  Google Scholar 

  • Summerfield A, Rziha HJ, Saalmüller A (1996) Functional characterization of porcine CD4+CD8+ extrathymic T lymphocytes. Cell Immunol 168: 291–296

    Article  PubMed  CAS  Google Scholar 

  • Saalmüller A, Werner T, Fachinger V (2002) T-helper cells from naive to committed. Vet Immunol Immunopathol 87: 137–145

    Article  PubMed  Google Scholar 

  • Mackay CR, Maddox JF, Brandon MR (1986) Three distinct subpopulations of sheep T lymphocytes. Eur J Immunol 16: 19–25

    Article  PubMed  CAS  Google Scholar 

  • Saalmüller A, Pauly T, Hohlich BJ, Pfaff E (1999) Characterization of porcine T lymphocytes and their immune response against viral antigens. J Biotechnol 73: 223–233

    Article  PubMed  Google Scholar 

  • Stokes CR, Bailey M (2000) The porcine gastrointestinal lamina propria: an appropriate target for mucosal immunisation? J Biotechnol 83: 51–55

    Article  PubMed  CAS  Google Scholar 

  • Rothkötter HJ, Pabst R (1989) Lymphocyte subsets in jejunal and ileal peyer's patches of normal and gnotobiotic minipigs. Immunology 67: 103–108

    PubMed  Google Scholar 

  • Bailey M, Plunkett FJ, Rothkötter HJ, Vega-Lopez MA, Haverson K, Stokes CR (2001) Regulation of mucosal immune responses in effector sites. Proceedings of the Nutrition Society 60: 427–435

    Article  PubMed  CAS  Google Scholar 

  • Wilson AD, Haverson K, Southgate K, Bland PW, Stokes CR, Bailey M (1996) Expression of major histocompatibility complex class II antigens on normal porcine intestinal endothelium. Immunology 88: 98–103

    Article  PubMed  CAS  Google Scholar 

  • Haverson K, Singha S, Stokes CR, Bailey M (2000) Professional and non-professional antigen-presenting cells in the porcine small intestine. Immunology 101: 492–500

    Article  PubMed  CAS  Google Scholar 

  • Mowat AM, Viney JL (1997) The anatomical basis of intestinal immunity. Immunol Rev 156: 145–166

    Article  PubMed  CAS  Google Scholar 

  • Laurent F, Eckmann L, Savidge TC, Morgan G, Theodos C, Naciri M, et al (1997) Cryptosporidium parvum infection of human intestinal epithelial cells induces the polarized secretion of C-X-C chemokines. Infection and Immunity 65: 5067–5073

    PubMed  CAS  Google Scholar 

  • Seydel KB, Zhang T, Champion GA, Fichtenbaum C, Swanson PE, Tzipori S, et al (1998) Cryptosporidium parvum Infection of human intestinal xenografts in SCID mice induces production of human tumor necrosis factor alpha and interleukin-8. Infection and Immunity 66: 2379–2382

    PubMed  CAS  Google Scholar 

  • Hermosilla C, Zahner H, Taubert A (2006) Eimeria bovis modulates adhesion molecule gene transcription in and PMN adhesion to infected bovine endothelial cells. Int J Parasitol 36: 423–431

    Article  PubMed  CAS  Google Scholar 

  • Schito ML, Barta JR (1997) Nonspecific immune responses and mechanisms of resistance to Eimeria papillata infections in mice. Infect Immun 65: 3165–3170

    PubMed  CAS  Google Scholar 

  • Blake DP, Shirley MW, Smith AL (2006) Genetic identification of antigens protective against coccidia. Parasite Immunol 28: 305–314

    Article  PubMed  CAS  Google Scholar 

  • Lillehoj HS, Trout JM (1996) Avian gut-associated lymphoid tissues and intestinal immune responses to Eimeria parasites. Clin Microbiol Rev 9: 349–360

    PubMed  CAS  Google Scholar 

  • Girard F, Fort G, Yvore P, Quere P (1997) Kinetics of specific immunoglobulin A, M and G production in the duodenal and caecal mucosa of chickens infected with Eimeria acervulina or Eimeria tenella. Int J Parasitol 27: 803–809

    Article  PubMed  CAS  Google Scholar 

  • Lillehoj HS (1986) Immune response during coccidiosis in SC and FP chickens. I. In vitro assessment of T cell proliferation response to stage-specific parasite antigens. Vet Immunol Immunopathol 13: 321–330

    Article  PubMed  CAS  Google Scholar 

  • Rose ME, Hesketh P (1984) Infection with Eimeria tenella: modulation of lymphocyte blastogenesis by specific antigen, and evidence for immunodepression. J Protozool 31: 549–553

    PubMed  CAS  Google Scholar 

  • Rose ME, Wakelin D, Joysey HS, Hesketh P (1988) Immunity to coccidiosis: adoptive transfer in NIH mice challenged with Eimeria vermiformis. Parasite Immunol 10: 59–69

    Article  PubMed  CAS  Google Scholar 

  • Culshaw RJ, Bancroft GJ, McDonald V (1997) Gut intraepithelial lymphocytes induce immunity against Cryptosporidium infection through a mechanism involving gamma interferon production. Infect Immun 65: 3074–3079

    PubMed  CAS  Google Scholar 

  • Schito ML, Barta JR, Chobotar B (1996) Comparison of four murine Eimeria species in immunocompetent and immunodeficient mice. J Parasitol 82: 255–262

    Article  PubMed  CAS  Google Scholar 

  • Lillehoj HS (1994) Analysis of Eimeria acervulina-induced changes in the intestinal T lymphocyte subpopulations in two chicken strains showing different levels of susceptibility to coccidiosis. Res Vet Sci 56: 1–7

    PubMed  CAS  Google Scholar 

  • Trout JM, Lillehoj HS (1993) Evidence of a role for intestinal CD8+ lymphocytes and macrophages in transport of Eimeria acervulina sporozoites. J Parasitol 79: 790–792

    Article  PubMed  CAS  Google Scholar 

  • Trout JM, Lillehoj HS (1995) Eimeria acervulina infection: evidence for the involvement of CD8+ T lymphocytes in sporozoite transport and host protection. Poult Sci 74: 1117–1125

    PubMed  CAS  Google Scholar 

  • Trout JM, Lillehoj HS (1996) T lymphocyte roles during Eimeria acervulina and Eimeria tenella infections. Vet Immunol Immunopathol 53: 163–172

    Article  PubMed  CAS  Google Scholar 

  • Hermosilla C, Burger HJ, Zahner H (1999) T cell responses in calves to a primary Eimeria bovis infection: phenotypical and functional changes. Vet Parasitol 84: 49–64

    Article  PubMed  CAS  Google Scholar 

  • Smith AL, Hayday AC (2000) An alphabeta T-cell-independent immunoprotective response towards gut coccidia is supported by gammadelta cells. Immunology 101: 325–332

    Article  PubMed  CAS  Google Scholar 

  • Ramsburg E, Tigelaar R, Craft J, Hayday A (2003) Age-dependent requirement for gammadelta T cells in the primary but not secondary protective immune response against an intestinal parasite. J Exp Med 198: 1403–1414

    Article  PubMed  CAS  Google Scholar 

  • Roberts SJ, Smith AL, West AB, Wen L, Findly RC, Owen MJ, et al (1996) T-cell alpha beta + and gamma delta + deficient mice display abnormal but distinct phenotypes toward a natural, widespread infection of the intestinal epithelium. Proc Natl Acad Sci USA 93: 11774–11779

    Article  PubMed  CAS  Google Scholar 

  • Smith AL, Hayday AC (2000) Genetic dissection of primary and secondary responses to a widespread natural pathogen of the gut, Eimeria vermiformis. Infect Immun 68: 6273–6280

    Article  PubMed  CAS  Google Scholar 

  • Inagaki-Ohara K, Dewi FN, Hisaeda H, Smith AL, Jimi F, Miyahira M, et al (2006) Intestinal intraepithelial lymphocytes sustain the epithelial barrier function against Eimeria vermiformis infection. Infect Immun 74: 5292–5301

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anja Joachim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Worliczek, H., Buggelsheim, M., Saalmüller, A. et al. Porcine isosporosis: Infection dynamics, pathophysiology and immunology of experimental infections. Wien Klin Wochenschr 119 (Suppl 3), 33–39 (2007). https://doi.org/10.1007/s00508-007-0859-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00508-007-0859-3

Key words

Navigation