Skip to main content
Log in

Lyme borreliosis in 2005, 30 years after initial observations in Lyme Connecticut

  • Review Article
  • Published:
Wiener klinische Wochenschrift Aims and scope Submit manuscript

Summary

Nearly 100 years ago, Afzelius described a patient with an expanding skin lesion, called erythema migrans [1], which is now known to be the initial skin manifestation of Lyme borreliosis. Approximately 70 years later, in 1976, epidemiologic evaluation of a cluster of children with arthritis in Lyme, Connecticut [2] led to a complete description of the infection [3]. During the subsequent years, investigators in a number of countries have made remarkable strides in the elucidation of this tick-borne spirochetal infection. The purpose of this review is to discuss the current status of Lyme borreliosis, including areas in which knowledge of the infection is still incomplete.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Afzelius A (1921) Erythema chronicum migrans. Acta Derm Venereol 2: 120–125

    Google Scholar 

  • Steere AC, Malawista SE, Snydman DR, Shope RE, Andiman WA, Ross MR, et al (1977) Lyme arthritis: an epidemic of oligoarticular arthritis in children and adults in three Connecticut communities. Arthritis Rheum 20: 7–17

    CAS  PubMed  Google Scholar 

  • Steere AC (1989) Lyme disease. N Engl J Med 321: 586–596

    Article  CAS  PubMed  Google Scholar 

  • Sigal LH, Hassett AL (2002) Contributions of societal and geographical environments to "chronic Lyme disease": the psychopathogenesis and aporology of a new "medically unexplained symptoms" syndrome. Environ Health Perspect 110 [Suppl 4]: 607–611

    PubMed  Google Scholar 

  • Baranton G, Postic D, Saint-Girons I, Boerlin P, Piffaretti JC, Assous M, et al (1992) Delineation of Borrelia burgdorferi sensu stricto, Borrelia garinii sp. nov., and group VS461 associated with Lyme borreliosis. Int J Sys Bacteriol 42: 378–383

    Article  CAS  Google Scholar 

  • Steere AC, Coburn J, Glickstein L (2004) The emergence of Lyme disease. J Clin Invest 113: 1093–1101

    Article  CAS  PubMed  Google Scholar 

  • Richter D, Schlee DB, Allgower R, Matuschka FR (2004) Relationships of a novel Lyme disease spirochete, Borrelia spielmani sp. nov., with its hosts in Central Europe. Appl Environ Microbiol 70: 6414–6419

    Article  CAS  PubMed  Google Scholar 

  • Xu G, Fang QQ, Keirans JE, Durden LA (2003) Molecular phylogenetic analyses indicate that the Ixodes ricinus complex is a paraphyletic group. J Parasitol 89: 452–457

    Article  CAS  PubMed  Google Scholar 

  • Kurtenbach K, Sewell HS, Ogden NH, Randolph SE, Nutall PA (1998) Serum complement sensitivity as a key factor in Lyme disease ecology. Infect Immun 66: 1248–1251

    CAS  PubMed  Google Scholar 

  • LoGiudice K, Ostfeld RS, Schmidt KA, Keesing F (2003) The ecology of infectious disease: effects of host diversity and community composition on Lyme disease risk. Proc Natl Acad Sci USA 100: 567–571

    Article  CAS  PubMed  Google Scholar 

  • Centers for Disease Control and Prevention (2004) Lyme disease – United States, 2001–2002. MMWR Morb Mortal Wkly Rep 53: 365–369

    Google Scholar 

  • Brown RN, Lane RS (1992) Lyme disease in California: a novel enzootic transmission cycle of Borrelia burgdorferi. Science 256: 1439–1442

    Article  CAS  PubMed  Google Scholar 

  • Schneider BS, Zeidner NS, Burkot TR, Maupin GO, Piesman J (2000) Borrelia isolates in northern Colorado identifies Borrelia bissettii. J Clin Microbiol 38: 3103–3105

    CAS  PubMed  Google Scholar 

  • Gern L, Pierre-Francois H (2002) Ecology of Borrelia burgdorferi sensu lato in Europe. In: Gray JS, Kahl O, Lane RS, Stanek G (eds) Lyme borreliosis: biology, epidemiology and control. CABI Publishing, Oxford, pp 149–174

    Google Scholar 

  • Dennis DT, Hayes EB (2002) Epidemiology of Lyme Borreliosis. In: Gray JS, Kahl O, Lane RS, Stanek G (eds) Lyme borreliosis: biology, epidemiology and control. CABI Publishing, Oxford, pp 251–280

    Google Scholar 

  • Masuzawa T (2004) Terrestrial Distribution of the Lyme Borreliosis Agent Borrelia burgdorferi sensu lato in East Asia. Jpn J Infect Dis 57: 229–235

    PubMed  Google Scholar 

  • Burgdorfer W, Barbour AG, Hayes SF, Benach JL, Grunwaldt E, Davis JP (1982) Lyme disease – a tick-borne spirochetosis? Science 216: 1317–1319

    Article  CAS  PubMed  Google Scholar 

  • Fraser CM, Casjens S, Huang WM, Sutton GG, Clayton R, Lathigra R, et al (1997) Genomic sequence of a Lyme disease spirochete, Borrelia burgdorferi. Nature 390: 580–586

    Article  CAS  PubMed  Google Scholar 

  • Casjens S, Palmer N, Van Vugt R, Mun Huang W, Stevenson B, Rosa P, et al (2000) A bacterial genome in flux: the twelve linear and nine circular extrachromosomal DNAs in an infectious isolate of the Lyme disease spirochete Borrelia burgdorferi. Mol Microbiol 35: 490–516

    Article  CAS  PubMed  Google Scholar 

  • Zhang JR, Hardham JM, Barbour AG, Norris SJ (1997) Antigenic variation in Lyme disease borreliae by promiscuous recombination of VMP-like sequence cassettes. Cell 89: 275–285

    Article  CAS  PubMed  Google Scholar 

  • Bono JL, Elias AF, Kupko JJ III, Stevenson B, Tilly K, Rosa P (2000) Efficient targeted mutagenesis in Borrelia burgdorferi. J Bacteriol 182: 2445–2452

    Article  CAS  PubMed  Google Scholar 

  • Cabello FC, Sartakova ML, Dobrikova EY (2001) Genetic manipulation of spirochetes – light at the end of the tunnel. Trends Microbiol 9: 245–248

    Article  CAS  PubMed  Google Scholar 

  • Stewart PE, Thalken R, Bono JL, Rosa P (2001) Isolation of a circular plasmid region sufficient for autonomous replication and transformation of infectious Borrelia burgdorferi. Mol Microbiol 39: 714–721

    Article  CAS  PubMed  Google Scholar 

  • Schwan TG, Piesman J (2000) Temporal changes in outer surface proteins A and C of the Lyme disease-associated spirochete, Borrelia burgdorferi, during the chain of infection in ticks and mice. J Clin Microbiol 38: 382–388

    CAS  PubMed  Google Scholar 

  • Ohnishi J, Piesman J, de Silva AM (2001) Antigenic and genetic heterogeneity of Borrelia burgdorferi populations transmitted by ticks. Proc Natl Acad Sci USA 98: 670–675

    Article  CAS  PubMed  Google Scholar 

  • Ramamoorthi N, Narasimhan S, Pal U, Bao F, Yang XF, Fish D, et al (2005) The Lyme disease agent exploits a tick protein to infect the mammalian host. Nature 436: 573–577

    Article  CAS  PubMed  Google Scholar 

  • Hu LT, Perides G, Noring R, Klempner MS (1995) Binding of human plasminogen to Borrelia burgdorferi. Infect Immun 63: 3491–3496

    CAS  PubMed  Google Scholar 

  • Coleman JL, Gebbia JA, Pieman J, Degen JL, Bugge TH, Benach JL (1997) Plasminogen is required for efficient dissemination of B. burgdorferi in ticks and for enhancement of spirochetemia in mice. Cell 89: 1111–1119

    Article  CAS  PubMed  Google Scholar 

  • Kraiczy P, Hartmann K, Hellwage J, Skerka C, Kirschfink M, Brade V, et al (2004) Immunological characterization of the complement regulator factor H-binding CRASP and Erp proteins of Borrelia burgdorferi. Int J Med Microbiol 293: 152–157

    Article  CAS  PubMed  Google Scholar 

  • Hellwage J, Meri T, Heikkila T, Alitalo A, Panelius J, Lahdenne P, et al (2001) The complement regulator factor H binds to the surface protein OspE of Borrelia burgdorferi. J Biol Chem 276: 8427–8435

    Article  CAS  PubMed  Google Scholar 

  • Seinost G, Dykhuizen DE, Dattwyler RJ, Golde WT, Dunn JJ, Wang IN, et al (1999) Four clones of Borrelia burgdorferi sensu stricto cause invasive infection in humans. Infect Immun 67: 3518–3524

    CAS  PubMed  Google Scholar 

  • Probert WS, Johnson BJB (1998) Identification of a 47 kDa fibronectin-binding protein expressed by Borrelia burgdorferi isolate B31. Mol Microbiol 30: 1003–1015

    Article  CAS  PubMed  Google Scholar 

  • Coburn J, Cugini C (2003) Targeted mutation of the outer membrane protein P66 disrupts attachment of the Lyme disease agent, Borrelia burgdorferi, to integrin alphavbeta3. Proc Natl Acad Sci USA 100: 7301–7306

    Article  CAS  PubMed  Google Scholar 

  • Leong JL, Morrissey PE, Ortega-Barria E, Pereira MEA, Coburn J (1995) Hemagglutination and proteoglycan binding by the Lyme disease spirochete, Borrelia burgdorferi. Infect Immun 63: 874–883

    CAS  PubMed  Google Scholar 

  • Guo BP, Brown EL, Dorward DW, Rosenberg LC, Hook M (1998) Decorin-binding adhesins from Borrelia burgdorferi. Mol Microbiol 30: 711–723

    Article  CAS  PubMed  Google Scholar 

  • Cadavid D, Thomas DD, Crawley R, Barbour AG (1994) Variability of a bacterial surface protein and disease expression in a possible mouse model of systemic Lyme borreliosis. J Experi Med 179: 631–642

    Article  CAS  Google Scholar 

  • Wooten RM, Ma Y, Yoder RA, Brown JP, Weis JH, Zachary JF, et al (2002) Toll-like receptor 2 is required for innate, but not acquired, host defense to Borrelia burgdorferi. J Immunol 168: 348–355

    CAS  PubMed  Google Scholar 

  • Talkington J, Nickell SP (2001) Role of Fc gamma receptors in triggering host cell activation and cytokine release by Borrelia burgdorferi. Infect Immun 69: 413–419

    Article  CAS  PubMed  Google Scholar 

  • Mullegger RR, McHugh G, Ruthazer R, Binder B, Kerl H, Steere AC (2000) Differential expression of cytokine mRNA in skin specimens from patients with erythema migrans or acrodermatitis chronica atrophicans. J Invest Dermatol 115: 1115–1123

    Article  CAS  PubMed  Google Scholar 

  • Salazar JC, Pope CD, Sellati TJ, Feder HMJ, Kiely TG, Dardick KR, et al (2003) Coevolution of markers of innate and adaptive immunity in skin and peripheral blood of patients with erythema migrans. J Immunol 171: 2660–2670

    CAS  PubMed  Google Scholar 

  • Kumar H, Belperron A, Barthold SW, Bockenstedt LK (2000) Cutting edge: CD1d deficiency impairs murine host defense against the spirochete, Borrelia burgdorferi. J Immunol 165: 4797–4801

    CAS  PubMed  Google Scholar 

  • Nguyen TP, Lam TT, Barthold SW, Telford SR 3rd, Flavell RA, Fikrig E (1994) Partial destruction of Borrelia burgdorferi within ticks that engorged on OspE- or OspF-immunized mice. Infect Immun 62: 2079–2084

    CAS  PubMed  Google Scholar 

  • Steere AC, Glickstein L (2004) Elucidation of Lyme arthritis. Nature Reviews Immunology 4: 143–152

    Article  CAS  PubMed  Google Scholar 

  • Dong Z, Edelstein M, Glickstein LJ (1997) CD8+ T cells are activated during the early Th1 and Th2 immune responses in the murine Lyme disease model. Infect Immun 65: 5334–5337

    CAS  PubMed  Google Scholar 

  • Liang FT, Jacobs MB, Bowers LC, Philipp MT (2002) An immune evasion mechanism for spirochetal persistence in Lyme borreliosis. J Experi Med 195: 415–422

    Article  CAS  Google Scholar 

  • Barthold SW, Beck DS, Hansen GM, Terwilliger GA, Moody KD (1990) Lyme borreliosis in selected strains and ages of laboratory mice. J Infect Dis 162: 133–138

    CAS  PubMed  Google Scholar 

  • Ma Y, Seiler KP, Eichwals EJ, Weis JH, Teuscher C, Weiss JJ (1998) Distinct characteristics of resistance to Borrelia burgdorferi-induced arthritis in C57BL/6N mice. Infect Immun 66: 161–168

    CAS  PubMed  Google Scholar 

  • Brown JP, Zachary JF, Teuscher C, Weis JJ, Wooten RM (1999) Dual role of interleukin-10 in murine Lyme disease: regulation of arthritis severity and host defense. Infect Immun 67: 5142–5150

    CAS  PubMed  Google Scholar 

  • Anguita J, Rincon M, Samanta S, Barthold SW, Flavell RA, Fikrig E (1998) Borrelia burgdorferi-infected, interleukin-6-deficient mace have decreased Th2 responses and increased Lyme arthritis. J Infect Dis 178: 1512–1515

    Article  CAS  PubMed  Google Scholar 

  • Kang I, Barthold SW, Persing DH, Bockenstedt LK (1997) T-helper-cell cytokines in the early evolution of murine Lyme arthritis. Infect Immun 65: 3107–3111

    CAS  PubMed  Google Scholar 

  • Zeider N, Mbow ML, Dolan M, Massung R, Baca E, Piesman J (1997) Effects of Ixodes scapularis and Borrelia burgdorferi on modulation of the host immune response: induction of a TH2 cytokine response in Lyme diseasesusceptible (C3H/HeJ) mice but not in disease-resistant (BALB/c) mice. Infect Immun 65: 3100–3106

    Google Scholar 

  • Baranton G, Seinost G, Theodore G, Postic D, Dykhuizen D (2001) Distinct levels of genetic diversity of Borrelia burgdorferi are associated with different aspects of pathogenicity. Res Microbiol 152: 149–156

    Article  CAS  PubMed  Google Scholar 

  • Strle F, Nadelman RB, Cimperman J, Nowakowski J, Picken RN, Schwartz I, et al (1999) Comparison of culture-confirmed erythema migrans caused by Borrelia burgdorferi sensu stricto in New York state and by Borrelia afzelii in Slovenia. Ann Intern Med 130: 32–36

    CAS  PubMed  Google Scholar 

  • Steere AC (2001) Lyme disease. N Engl J Med 345: 115–125

    Article  CAS  PubMed  Google Scholar 

  • Steere AC, Dhar A, Hernandez J, Fischer PA, Sikand VK, Schoen RT, et al (2003) Systemic symptoms without erythema migrans as the presenting picture of early Lyme disease. Am J Med 114: 58–62

    Article  PubMed  Google Scholar 

  • Nowakowski J, Schwartz I, Liveris D, Wang G, Aguero-Rosenfeld ME, Girao G, et al (2001) Laboratory diagnostic techniques for patients with early Lyme disease associated with erythema migrans: a comparison of different techniques. Clin Infect Dis 33: 2023–2027

    Article  CAS  PubMed  Google Scholar 

  • Wormser GP, Bittker S, Cooper D, Nowakowski J, Nadelman RB, Pavia C (2001) Yield of large-volume blood cultures in patients with early Lyme disease. J Infect Dis 184: 1070–1072

    Article  CAS  PubMed  Google Scholar 

  • Nocton JJ, Dressler F, Rutledge BJ, Rys PN, Persing DH, Steere AC (1994) Detection of Borrelia burgdorferi DNA by polymerase chain reaction in synovial fluid in Lyme arthritis. N Engl J Med 330: 229–234

    Article  CAS  PubMed  Google Scholar 

  • Bradley JF, Johnson RC, Goodman JL (1994) The persistence of spirochetal nucleic acids in active Lyme arthritis. Ann Intern Med 120: 487–489

    CAS  PubMed  Google Scholar 

  • Nocton JJ, Bloom BJ, Rutledge BJ, Persing DH, Logigian EL, Schmid CH, et al (1996) Detection of Borrelia burgdorferi DNA by polymerase chain reaction in cerebrospinal fluid in patients with Lyme neuroborreliosis. J Infect Dis 174: 623–627

    CAS  PubMed  Google Scholar 

  • Lebech AM (2002) Polymerase chain reaction in diagnosis of Borrelia burgdorferi infections and studies on taxonomic classification. APMIS [Suppl]: 1–40

  • Centers for Disease Control and Prevention (1995) Recommendations for test performance and interpretation from the Second International Conference on serologic diagnosis of Lyme disease. MMWR Morb Mortal Wkly Rep 44: 590–591

    Google Scholar 

  • Dressler F, Whalen JA, Reinhardt BN, Steere AC (1993) Western blotting in the serodiagnosis of Lyme disease. J Infect Dis 167: 392–400

    CAS  PubMed  Google Scholar 

  • Robertson J, Guy E, Andrews N, Wilske B, Anda P, Granstrom M, et al (2000) Immunoblot interpretation criteria for serodiagnosis of early Lyme disease. J Clin Microbiol 33: 419–427

    Google Scholar 

  • Liang FT, Steere AC, Marques AR, Johnson BJ, Miller JN, Philipp MT (1999) Sensitive and specific serodiagnosis of Lyme disease by enzyme-linked immunosorbent assay with a peptide based on an immunodominant conserved region of Borrelia burgdorferi VlsE. J Clin Microbiol 37: 3990–3996

    CAS  PubMed  Google Scholar 

  • Bacon RM, Biggerstaff BJ, Schriefer ME, Gilmore RD, Philipp MT, Steere AC, et al (2003) Serodiagnosis of Lyme disease by kinetic enzyme-linked immunosorbent assay using recombinant VlsE1 or peptide antigens of Borrelia burgdorferi compared with 2-tiered testing using whole-cell lysates. J Infect Dis 187: 1187–1199

    Article  CAS  PubMed  Google Scholar 

  • Wormser GP, Nadelman RB, Dattwyler RJ, Dennis DT, Shapiro ED, Steere AC, et al (2000) Practice guidelines for the treatment of Lyme disease. Clin Infect Dis 31: S1–S14

    Article  CAS  Google Scholar 

  • Malawista SE (2000) Resolution of Lyme arthritis, acute or prolonged: a new look. Inflammation 24: 493–504

    Article  CAS  PubMed  Google Scholar 

  • Carlson D, Hernandez J, Bloom BJ, Coburn J, Aversa JM, Steere AC (1999) Lack of Borrelia burgdorferi DNA in synovial samples in patients with antibiotic treatment-resistant Lyme arthritis. Arthritis Rheum 42: 2705–2709

    Article  CAS  PubMed  Google Scholar 

  • Steere AC, Klitz W, Drouin EE, Falk BA, Kwok WW, Nepom GT, et al (2006) Antibiotic-refractory Lyme arthritis with HLA-DR molecules that bind a Borrelia burgdorferi peptide. J Experi Med 203: 961–971

    Article  CAS  Google Scholar 

  • Gross DM, Forsthuber T, Tary-Lehman M, Etling C, Ito K, Nagy ZA, et al (1998) Identification of LFA-1 as a candidate autoantigen in treatment-resistant Lyme arthritis. Science 281: 703–706

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Field JA, Glickstein L, Molloy PJ, Huber BT, Steere AC (1999) Association of antibiotic treatment-resistant Lyme arthritis with T cell responses to dominant epitopes of outer-surface protein A (OspA) of Borrelia burgdorferi. Arthritis Rheum 42: 1813–1822

    Article  CAS  PubMed  Google Scholar 

  • Sigal LH (1990) Summary of the first 100 patients seen at a Lyme disease referral center. Am J Med 88: 577–581

    Article  CAS  PubMed  Google Scholar 

  • Dinerman H, Steere AC (1992) Lyme disease associated with fibromyalgia. Ann Intern Med 117: 281–285

    CAS  PubMed  Google Scholar 

  • Klempner MS, Hu LT, Evans J, Schmid CH, Johnson GM, Trevino RP, et al (2001) Two controlled trials of antibiotic treatment in patients with persistent symptoms and a history of Lyme disease. N Engl J Med 345: 85–92

    Article  CAS  PubMed  Google Scholar 

  • Steere AC (2002) A 58-year-old man with a diagnosis of chronic Lyme disease. JAMA 288: 1002–1010

    Article  PubMed  Google Scholar 

  • Fikrig E, Barthold SW, Kantor FS, Flavell RA (1990) Protection of mice against the Lyme disease agent by immunizing with recombinant OspA. Science 250: 553–556

    Article  CAS  PubMed  Google Scholar 

  • Simon MM, Schaible UE, Kramer MD, Eckerskorn C, Museteanu C, Muller-Hermelink HK, et al (1991) Recombinant outer surface protein A from Borrelia burgdorferi induces antibodies protective against spirochetal infection in mice. J Infect Dis 164: 123–132

    CAS  PubMed  Google Scholar 

  • Steere AC, Sikand VK, Meurice F, Parenti DL, Fikrig E, Schoen RT, et al (1998) Vaccination against Lyme disease with recombinant Borrelia burgdorferi outer-surface lipoprotein a with adjuvant. N Engl J Med 339: 209–215

    Article  CAS  PubMed  Google Scholar 

  • Sigal LH, Zahradnik JM, Lavin P, Patella SJ, Bryant G, Haselby R, et al (1998) A vaccine consisting of recombinant Borrelia burgdorferi outer-surface protein A to prevent Lyme disease. Recombinant outer-surface protein A Lyme disease vaccine study consortium [see comments] [published erratum appears in N Engl J Med (1998) 339 (8): 571]. N Engl J Med 339: 216–222

    Article  CAS  PubMed  Google Scholar 

  • Meltzer MI, Dennis DT, Orloski KA (1999) The cost effectiveness of vaccinating against Lyme disease. Emerg Infect Dis 5: 321–328

    Article  CAS  PubMed  Google Scholar 

  • Shadick NA, Liang MH, Phillips CB, Fossel K, Kuntz KM (2001) The cost-effectiveness of vaccination against Lyme disease. Arch Intern Med 161: 554–561

    Article  CAS  PubMed  Google Scholar 

  • Hanson MS, Edelman R (2003) Progress and controversy surrounding vaccines against Lyme disease. Future Drugs 2: 687–703

    Google Scholar 

  • Anonymous (2006) When a vaccine is safe. Nature 439: 509

    Google Scholar 

  • Hayes EB, Piesman J (2003) How can we prevent Lyme disease? N Engl J Med 348: 2424–2430

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allen C. Steere.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steere, A. Lyme borreliosis in 2005, 30 years after initial observations in Lyme Connecticut. Wien Klin Wochenschr 118, 625–633 (2006). https://doi.org/10.1007/s00508-006-0687-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00508-006-0687-x

Keywords

Navigation