Skip to main content
Log in

Weak sharp minima for interval-valued functions and its primal-dual characterizations using generalized Hukuhara subdifferentiability

  • Optimization
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

This article introduces the concept of weak sharp minima for convex interval-valued functions. To solve constrained and unconstrained convex IOPs by WSM, we provide primal and dual characterizations of the set of WSM. The primal characterization is given in terms of gH-directional derivatives. On the other hand, to derive dual characterizations, we propose the notions of the support function of a subset of \(I({\mathbb {R}})^{n}\) and gH-subdifferentiability for convex IVFs. Further, we develop the required gH-subdifferential calculus for convex IVFs. Thereafter, by using the proposed gH-subdifferential calculus, we provide dual characterizations for the set of WSM of objective IVFs of convex constrained and unconstrained IOPs. Two applications of the proposed theory are presented. The first one determines the set of WSM of a minimum risk portfolio interval optimization problem. In the second application, we propose a way to find weak efficient solutions of linear and nonlinear IOPs using WSM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  • Abd Elaziz M, Oliva D, Xiong S (2017) An improved opposition-based sine cosine algorithm for global optimization. Expert Syst Appl 90:484–500

    Article  Google Scholar 

  • Abualigah L (2020) Multi-verse optimizer algorithm: a comprehensive survey of its results, variants, and applications. Neural Comput Appl 32(16):12381–12401

    Article  Google Scholar 

  • Abualigah L, Diabat A, Mirjalili S, Abd Elaziz M, Gandomi AH (2021) The arithmetic optimization algorithm. Comput Methods Appl Mech Eng 376:113609

    Article  MathSciNet  MATH  Google Scholar 

  • Abualigah L, Yousri D, Abd Elaziz M, Ewees AA, Al-qaness MA, Gandomi AH (2021) Aquila optimizer: a novel meta-heuristic optimization algorithm. Comput Ind Eng 157:107250

    Article  Google Scholar 

  • Ahmad I, Jayswal A, Al-Homidan S, Banerjee J (2019) Sufficiency and duality in interval-valued variational programming. Neural Comput Appl 31(8):4423–4433

    Article  Google Scholar 

  • Bartholomew-Biggs M (2006) Nonlinear optimization with financial applications. Springer Science Business Media. Springer, Heidelberg

    MATH  Google Scholar 

  • Beck A (2017) First-order methods in optimization. SIAM, New Delhi

    Book  MATH  Google Scholar 

  • Bhurjee AK, Panda G (2012) Efficient solution of interval optimization problem. Math Methods Op Res 76(3):273–288

    Article  MathSciNet  MATH  Google Scholar 

  • Burke J, Deng S (2002) Weak sharp minima revisited part I: basic theory. Control Cyber 31:439–469

    MATH  Google Scholar 

  • Burke JV, Deng S (2005) Weak sharp minima revisited, part II: application to linear regularity and error bounds. Math Program 104(2):235–261

    Article  MathSciNet  MATH  Google Scholar 

  • Burke JV, Ferris MC (1993) Weak sharp minima in mathematical programming. SIAM J Control Op 31(5):1340–1359

    Article  MathSciNet  MATH  Google Scholar 

  • Chalco-Cano Y, Lodwick WA, Rufián-Lizana A (2013) Optimality conditions of type KKT for optimization problem with interval-valued objective function via generalized derivative. Fuzzy Optim Decis Mak 12(3):305–322

    Article  MathSciNet  MATH  Google Scholar 

  • Chalco-Cano Y, Rufián-Lizana A, Román-Flores H, Jiménez-Gamero MD (2013) Calculus for interval-valued functions using generalized Hukuhara derivative and applications. Fuzzy Sets Syst 219:49–67

    Article  MathSciNet  MATH  Google Scholar 

  • Chanas S, Kuchta D (1996) Multiobjective programming in optimization of interval objective functions-a generalized approach. Eur J Op Res 94(3):594–598

    Article  MATH  Google Scholar 

  • Chen SH, Wu J, Chen YD (2004) Interval optimization for uncertain structures. Finite Elem Anal Des 40(11):1379–1398

    Article  Google Scholar 

  • Das S, Dutta B, Guha D (2016) Weight computation of criteria in a decision-making problem by knowledge measure with intuitionistic fuzzy set and interval-valued intuitionistic fuzzy set. Soft Comput 20(9):3421–3442

    Article  MATH  Google Scholar 

  • Dey A, Son LH, Pal A, Long HV (2020) Fuzzy minimum spanning tree with interval type 2 fuzzy arc length: formulation and a new genetic algorithm. Soft Comput 24(6):3963–3974

    Article  Google Scholar 

  • Dhara A, Dutta J (2011) Optimality Conditions in Convex Optimization: a Finite-Dimensional View. CRC Press, Florida

    Book  MATH  Google Scholar 

  • Faramarzi A, Heidarinejad M, Stephens B, Mirjalili S (2020) Equilibrium optimizer: a novel optimization algorithm. Knowledge-Based Syst 191:105190

    Article  Google Scholar 

  • Ferris MC (1990) Iterative linear programming solution of convex programs. J Optim Theory Appl 65(1):53–65

    Article  MathSciNet  MATH  Google Scholar 

  • Ghosh D (2017) Newton method to obtain efficient solutions of the optimization problems with interval-valued objective functions. J Appl Math Comput 53(1–2):709–731

    Article  MathSciNet  MATH  Google Scholar 

  • Ghosh D, Chauhan RS, Mesiar R, Debnath AK (2020) Generalized Hukuhara Gâteaux and Fréchet derivatives of interval-valued functions and their application in optimization with interval-valued functions. Inform Sci 510:317–340

    Article  MathSciNet  MATH  Google Scholar 

  • Ghosh D, Chauhan RS, Mesiar R, et al (2021) Generalized-hukuhara subdifferential analysis and its application in nonconvex composite optimization problems with interval-valued functions. arXiv preprint arXiv:2109.14586

  • Ghosh D, Debnath AK, Pedrycz W (2020) A variable and a fixed ordering of intervals and their application in optimization with interval-valued functions. Int J Approx Reason 121:187–205

    Article  MathSciNet  MATH  Google Scholar 

  • Ghosh D, Ghosh D, Bhuiya SK, Patra LK (2018) A saddle point characterization of efficient solutions for interval optimization problems. J Appl Math Comput 58(1–2):193–217

    Article  MathSciNet  MATH  Google Scholar 

  • Ghosh D, Singh A, Shukla K, Manchanda K (2019) Extended Karush-Kuhn-Tucker condition for constrained interval optimization problems and its application in support vector machines. Inform Sci 504:276–292

    Article  MathSciNet  MATH  Google Scholar 

  • Hiriart-Urruty JB, Lemaréchal C (2004) Fundamentals of Convex Analysis. Springer Science & Business Media. Springer, Berlin

    MATH  Google Scholar 

  • Hukuhara M (1967) Integration des applications mesurables dont la valeur est un compact convexe. Funkcialaj Ekvacioj 10(3):205–223

    MathSciNet  MATH  Google Scholar 

  • Ida M (2003) Portfolio selection problem with interval coefficients. Appl Math Lett 16(5):709–713

    Article  MathSciNet  MATH  Google Scholar 

  • Inuiguchi M, Kume Y (1991) Goal programming problems with interval coefficients and target intervals. Eur J Op Res 52(3):345–360

    Article  MATH  Google Scholar 

  • Inuiguchi M, Sakawa M (1995) Minimax regret solution to linear programming problems with an interval objective function. Eur J Op Res 86(3):526–536

    Article  MATH  Google Scholar 

  • Ishibuchi H, Tanaka H (1990) Multiobjective programming in optimization of the interval objective function. Eur J Op Res 48(2):219–225

    Article  MATH  Google Scholar 

  • Jana M, Panda G (2014) Solution of nonlinear interval vector optimization problem. Op Res 14(1):71–85

    Google Scholar 

  • Jiang C, Han X, Li D (2012) A new interval comparison relation and application in interval number programming for uncertain problems. Comput, Mater, Continua 27(3):275–303

    Google Scholar 

  • Jiang C, Han X, Liu G, Liu G (2008) A nonlinear interval number programming method for uncertain optimization problems. Eur J Op Res 188(1):1–13

    Article  MathSciNet  MATH  Google Scholar 

  • Kumar G, Ghosh D (2021) Ekeland’s variational principle for interval-valued functions. arXiv preprint arXiv:2104.11167

  • Lee KS, Geem ZW (2005) A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice. Comput Methods Appl Mecha Eng 194(36–38):3902–3933

    Article  MATH  Google Scholar 

  • Lupulescu V (2013) Hukuhara differentiability of interval-valued functions and interval differential equations on time scales. Inform Sci 248:50–67

    Article  MathSciNet  MATH  Google Scholar 

  • Matsushita SY, Xu L (2012) Finite termination of the proximal point algorithm in banach spaces. J Math Anal Appl 387(2):765–769

    Article  MathSciNet  MATH  Google Scholar 

  • Mohammad Hasani Zade B, Mansouri N (2021) Ppo: a new nature-inspired metaheuristic algorithm based on predation for optimization. Soft Comput 26:1–72

    Google Scholar 

  • Moore RE (1966) Interval analysis. Prentice-Hall Englewood Cliffs, NJ

    MATH  Google Scholar 

  • Mráz F (1998) Calculating the exact bounds of optimal values in LP with interval coefficients. Ann Op Res 81:51–62

    Article  MathSciNet  MATH  Google Scholar 

  • Rockafellar RT, Wets RJB (2009) Variational analysis, vol 317. Springer Science & Business Media. Springer, Heidelberg

    MATH  Google Scholar 

  • Sahoo L, Bhunia AK, Kapur PK (2012) Genetic algorithm based multi-objective reliability optimization in interval environment. Comput Ind Eng 62(1):152–160

    Article  Google Scholar 

  • Sengupta A, Pal TK, Chakraborty D (2001) Interpretation of inequality constraints involving interval coefficients and a solution to interval linear programming. Fuzzy Sets Syst 119(1):129–138

    Article  MATH  Google Scholar 

  • Shaocheng T (1994) Interval number and fuzzy number linear programmings. Fuzzy Sets Syst 66(3):301–306

    Article  MathSciNet  Google Scholar 

  • Singh D, Dar BA, Kim D (2016) KKT optimality conditions in interval valued multiobjective programming with generalized differentiable functions. Eur J Op Res 254(1):29–39

    Article  MathSciNet  MATH  Google Scholar 

  • Stefanini L, Bede B (2009) Generalized Hukuhara differentiability of interval-valued functions and interval differential equations. Nonlinear Anal: Theory, Methods Appl 71(3–4):1311–1328

    Article  MathSciNet  MATH  Google Scholar 

  • Steuer RE (1981) Algorithms for linear programming problems with interval objective function coefficients. Math Op Res 6(3):333–348

    Article  MathSciNet  MATH  Google Scholar 

  • Treanţă S (2021) On a class of constrained interval-valued optimization problems governed by mechanical work cost functionals. J Optim Theory Appl 188(3):913–924

    Article  MathSciNet  MATH  Google Scholar 

  • Wang J, Li C, Yao JC (2015) Finite termination of inexact proximal point algorithms in hilbert spaces. J Optim Theory Appl 166(1):188–212

    Article  MathSciNet  MATH  Google Scholar 

  • Wu H (2010) Duality theory for optimization problems with interval-valued objective functions. J Optim Theory Appl 144(3):615–628

    Article  MathSciNet  MATH  Google Scholar 

  • Wu HC (2007) The Karush-Kuhn-Tucker optimality conditions in an optimization problem with interval-valued objective function. Eur J Op Res 176(1):46–59

    Article  MathSciNet  MATH  Google Scholar 

  • Wu HC (2008) On interval-valued nonlinear programming problems. J Optim Theory Appl 338(1):299–316

  • Wu HC (2008) Wolfe duality for interval-valued optimization. J Optim Theory Appl 138(3):497–509

    Article  MathSciNet  MATH  Google Scholar 

  • Wu HC (2009) The Karush-Kuhn-Tucker optimality conditions in multiobjective programming problems with interval-valued objective functions. Eur J Op Res 196(1):49–60

    Article  MathSciNet  MATH  Google Scholar 

  • Wu X, Huang GH, Liu L, Li J (2006) An interval nonlinear program for the planning of waste management systems with economies-of-scale effects–a case study for the region of hamilton, ontario, canada. Eur J Op Res 171(2):349–372

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou J, Wang C (2012) New characterizations of weak sharp minima. Optim Lett 6(8):1773–1785

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We express our gratitude to the anonymous reviewers and the editors for their valuable comments and suggestions to improve the quality of the paper. The second author acknowledges the research grant MATRICS (MTR/2021/000696) from SERB, India to carry out this research work. The third author is thankful to the Department of Science and Technology, India, for the award of ‘inspire fellowship’ (DST/INSPIRE Fellowship/2017/IF170248).

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and analysis. Material preparation and analysis were performed by Krishan Kumar, Debdas Ghosh, and Gourav Kumar. The first draft of the manuscript was written by Krishan Kumar and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Krishan Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Proof of Lemma 1

A Proof of Lemma 1

(i). Let \({\textbf {A}}=[\underline{a},\overline{a}], {\textbf {B}}=[\underline{b},\overline{b}], \text { and } {\textbf {C}}=[\underline{c},\overline{c}]\). We have

$$\begin{aligned} r\le \underline{a} \text { and } r\le \overline{a}. \end{aligned}$$
(57)

Similarly, by \({\textbf {A}}\preceq {\textbf {B}}\ominus _{gH}{} {\textbf {C}}\), we have

$$\begin{aligned} \underline{a}\le \min \left\{ \underline{b}-\underline{c}, \overline{b}-\overline{c}\right\} \text {and } \overline{a}\le \max \left\{ \underline{b} -\underline{c},\overline{b}-\overline{c}\right\} . \end{aligned}$$
(58)
  • Case 1. Let \(\min \left\{ \underline{b} -\underline{c},\overline{b}-\overline{c}\right\} =\overline{b}-\overline{c}\) and \(\max \left\{ \underline{b} -\underline{c},\overline{b}-\overline{c}\right\} =\underline{b}-\underline{c}\). Then, from (57) and (58), we get

    $$\begin{aligned} \overline{c}+r\le \overline{b} \text { and } \underline{c}+r\le \underline{b}. \end{aligned}$$

    Hence, \({\textbf {C}}\oplus [r,r]\preceq {\textbf {B}}.\)

  • Case 2. When \(\min \left\{ \underline{b}-\underline{c}, \overline{b}-\overline{c}\right\} =\underline{b}-\underline{c}\) and \(\max \left\{ \underline{b}-\underline{c},\overline{b} -\overline{c}\right\} =\overline{b}-\overline{c}\). Proof contains similar steps as in Case 1.

(ii). Let \({\textbf {A}}=[\underline{a},\overline{a}]\) and \({\textbf {B}}=[\underline{b},\overline{b}].\) Then,

$$\begin{aligned}&\Big \{(1-\lambda )\odot {\textbf {A}} \oplus \lambda \odot {\textbf {B}}\Big \}\ominus _{gH}{} {\textbf {A}}\\&\quad =\Big \{(1-\lambda )\odot [\underline{a},\overline{a}] \oplus \lambda \odot [\underline{b},\overline{b}]\Big \} \ominus _{gH}[\underline{a},\overline{a}]\\&\quad =\left[ (1-\lambda )\underline{a}+\lambda \underline{b}, (1-\lambda )\overline{a}+\lambda \overline{b}\right] \ominus _{gH}[\underline{a},\overline{a}\Big ]\\&\qquad \text {because }\lambda \in [0,1]\\&\quad =\Big [\min \Big \{\lambda \underline{b} -\lambda \underline{a},\lambda \overline{b} -\lambda \overline{a}\Big \},\max \Big \{\lambda \underline{b} -\lambda \underline{a},\lambda \overline{b} -\lambda \overline{a}\Big \}\Big ]\\&\quad =\lambda \odot \Big \{{{\textbf {A}}} \ominus _{gH}{} {\textbf {B}}\Big \}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, K., Ghosh, D. & Kumar, G. Weak sharp minima for interval-valued functions and its primal-dual characterizations using generalized Hukuhara subdifferentiability. Soft Comput 26, 10253–10273 (2022). https://doi.org/10.1007/s00500-022-07332-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-022-07332-0

Keywords

Navigation