Skip to main content
Log in

Band selection using spectral and spatial information in particle swarm optimization for hyperspectral image classification

  • Data analytics and machine learning
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Dimensionality reduction (DR) is an effective preprocessing step in hyperspectral image (HSI) analysis. A particle swarm optimization (PSO)-based unsupervised DR method is proposed in the present paper where spectral divergence as well as spatial gradient information is used in selecting informative bands. In general, HSI is negatively affected by low signal-to-noise ratio (SNR). Hence, in the proposed method, a noise filter is applied to minimize the effect of noise in band selection. Clustering is introduced to reduce spatial redundancy and extract distinct patterns from the data. This enables improvement in the computation performance of each iteration in PSO. The proposed method is applied on two standard datasets, and the performance is evaluated using overall classification accuracy. Finally, results are compared with other recent state-of-the-art methods where the proposed method performed reasonably better than other tested methods in terms of consistency and classification accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability statement

Data sharing is not applicable to this article as no new data were created or analysed in this study.

References

  • Abidi MH, Alkhalefah H, Moiduddin K, Alazab M, Mohammed MK, Ameen W, Gadekallu TR (2021) Optimal 5G network slicing using machine learning and deep learning concepts. Comput Standards & Interfaces 76:103518. https://doi.org/10.1016/j.csi.2021.103518

    Article  Google Scholar 

  • Alipourfard T, Arefi H, Mahmoudi S A (2018) Novel deep learning framework by combination of subspace-based feature extraction and convolutional neural networks for hyperspectral images classification. IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium, 2018, pp. 4780–4783, doi: https://doi.org/10.1109/IGARSS.2018.8518956

  • Banerjee BP, Raval S (2021) A particle swarm optimization based approach to pre-tune programmable hyperspectral sensors. Remote Sens 13(16):3295. https://doi.org/10.3390/rs13163295

    Article  Google Scholar 

  • Bevilacqua M, Berthoumieu Y (2017) Unsupervised hyperspectral band selection via multi-feature information-maximization clustering. In: Image Processing (ICIP), 2017 International Conference on (pp. 540–544). IEEE

  • Cao X, Han J, Yang S, Tao D, Jiao L (2016) Band Selection and Evaluation with Spatial Information. Int J Remote Sens 37(19):4501–4520. https://doi.org/10.1080/01431161.2016.1214301

    Article  Google Scholar 

  • Cao X, Wu B, Tao D, Jiao L (2016) Automatic band selection using spatial-structure information and classifier-based clustering. IEEE J Selected Topics in Appl Earth Observ Remote Sens 9(9):4352–4360

    Article  Google Scholar 

  • Cover TM, Thomas JA (1991) Elements of information theory. Wiley, Hoboken, NJ

    Book  Google Scholar 

  • Cook RD, Weisberg S (1982) Residuals and influence in Regression. Chapman and Hall, New York

    MATH  Google Scholar 

  • Deepa P, Thilagavathi K (2015)Feature extraction of hyperspectral image using principal component analysis and folded-principal component analysis. In: Electronics and Communication Systems (ICECS), 2015 2nd International Conference on. IEEE, pp. 656–660.

  • Devijver PA, Kittler J (1982) Pattern recognition: a statistical approach, 1st edn. Prentice-Hall International, New Delhi

    MATH  Google Scholar 

  • Gao H, Yang Y, Zhang X, Li C, Yang Q, Wang Y (2019) Dimension reduction for hyperspectral remote sensor data based on multi-objective particle swarm optimization algorithm and game theory. Sensors 19(6):1327

    Article  Google Scholar 

  • Gao H, Li C, Zhou H, Hong J, Chen L (2016) Band selection method of hyperspectral image for classification based on particle swarm optimization. J Comput Theor Nanosci 13(11):8823–8828. https://doi.org/10.1166/jctn.2016.6048

    Article  Google Scholar 

  • Ghamisi P, Benediktsson JA (2015) Feature selection based on hybridization of genetic algorithm and particle swarm optimization. Geosci Remote Sens Lett IEEE 12(2):309–313. https://doi.org/10.1109/LGRS.2014.2337320

    Article  Google Scholar 

  • Ghorbanian A, Mohammadzadeh A (2018) An unsupervised feature extraction method based on band correlation clustering for hyperspectral image classification using limited training samples. Remote Sens Lett 9(10):982–991. https://doi.org/10.1080/2150704X.2018.1500723

    Article  Google Scholar 

  • Gong M, Zhang M, Yuan Y (2016) Unsupervised band selection based on evolutionary multiobjective optimization for hyperspectral images. IEEE Trans Geosci Remote Sens 54(1):544–557

    Article  Google Scholar 

  • Gonzalez RC, Woods R (2007) Digital image processing, Pearson Prentice Hall, 2e.

  • Green AA, Berman M, Switzer P, Craig MD (1988) A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Trans Geosci Remote Sens 26(1):65–74. https://doi.org/10.1109/36.3001

    Article  Google Scholar 

  • Hughes G (1968) On the mean accuracy of statistical pattern recognizers. IEEE Trans Inf Theory 14(1):55–63. https://doi.org/10.1109/TIT.1968.1054102

    Article  Google Scholar 

  • Kennedy J, Eberhart R (1995) Particle Swarm Optimization. Proceedings of IEEE International Conference on Neural Networks IV. pp. 1942 – 1948.

  • Kim B, Landgrebe DA (1991) Hierarchical classifier design in highdimensional numerous class cases. IEEE Trans Geosci Remote Sens 29(4):518–528

    Article  Google Scholar 

  • Kullback S (1959) Information theory and statistics. Wiley, New York

    MATH  Google Scholar 

  • Kullback S, Leibler RA (1951) On information and sufficiency. Ann Math Stat 22(1):79–86

    Article  MathSciNet  Google Scholar 

  • Li Q, Wang Qi, Li X (2019) An efficient clustering method for hyperspectral optimal band selection via shared nearest neighbor. Remote Sens 11(3):350. https://doi.org/10.3390/rs11030350

    Article  Google Scholar 

  • Li X, Du Z, Huang Y, Tan Z (2021) A deep translation (GAN) based change detection network for optical and SAR remote sensing images. ISPRS J Photogramm Remote Sens 179:14–34. https://doi.org/10.1016/j.isprsjprs.2021.07.007

    Article  Google Scholar 

  • Luo G, Chen G, Tian L, Qin K (2016) Minimum noise fraction versus principal component analysis as a preprocessing step for hyperspectral imagery denoising. Can J Remote Sens 42(2):106–116. https://doi.org/10.1080/07038992.2016.1160772

    Article  Google Scholar 

  • MacQueen JB (1967) Some methods for classification and analysis of multivariate observations, proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability. Berkeley, University of California Press, 1:281–297

  • Paul A, Chaki N (2019) Dimensionality reduction of hyperspectral images using pooling. Pattern Recognit Image Anal 29(1):72–78. https://doi.org/10.1134/S1054661819010085

    Article  Google Scholar 

  • Paul A, Chaki N (2021a) Dimensionality reduction using band correlation and variance measure from discrete wavelet transformed hyperspectral imagery. Ann Data Sci 8:261–274. https://doi.org/10.1007/s40745-019-00210-x

    Article  Google Scholar 

  • Paul A, Chaki N (2020) Supervised data driven approach for hyperspectral band selection using quantization. Geocarto Int. https://doi.org/10.1080/10106049.2020.1822929

    Article  Google Scholar 

  • Paul A, Chaki N (2021) Dimensionality reduction of Hyperspectral image using signal entropy and spatial information in genetic algorithm with discrete wavelet transformation. Evol Intell 14:1793–1802

    Article  Google Scholar 

  • Paul A, Bhattacharya S, Dutta D, Sharma JR, Dadhwal VK (2015) Band selection in hyperspectral imagery using spatial cluster mean and genetic algorithms. Gisci Remote Sens 52(6):644–661. https://doi.org/10.1080/15481603.2015.1075180

    Article  Google Scholar 

  • Paul A, Sahoo P, Chaki N (2020b) Dimensionality reduction of hyperspectral images: a data-driven approach for band selection. In: Chaki R., Cortesi A., Saeed K., Chaki N. (eds) Advanced Computing and Systems for Security. Advances in Intelligent Systems and Computing, vol 1136: 11–27. Springer, Singapore

  • Paul A, Bhoumik S, Chaki N (2021) SSNET: An improved deep hybrid network for hyperspectral image classification. Neural Comput Appl 33:1575–1585

    Article  Google Scholar 

  • Paul A, Kundu A, Chaki N, Dutta D, Jha CS (2021) Wavelet enabled convolutional autoencoder based deep neural network for hyperspectral image denoising. Multimedia Tools Appl. https://doi.org/10.1007/s11042-021-11689-z

  • Paul A, Bhoumik S (2021) Classification of hyperspectral imagery using spectrally partitioned HyperUnet. Neural Comput Appl. https://doi.org/10.1007/s00521-021-06532-3

    Article  Google Scholar 

  • Reis MS, Dutra LV, Sant’AnnaEscada SJSMIS (2017) Examining multi-legend change detection in amazon with pixel and region based methods. Remote Sens. https://doi.org/10.3390/rs9010077

    Article  Google Scholar 

  • Sellami A, Farah M, Farah IR, Solaiman B (2018) Hyperspectral imagery semantic interpretation based on adaptive constrained band selection and knowledge extraction techniques. IEEE J Selected Topics in Appl Earth Observ Remote Sens 11(4):1337–1347

    Article  Google Scholar 

  • Shah-Hosseini R, Homayouni S, Safari A (2015) A hybrid kernel-based change detection method for remotely sensed data in a similarity space. Remote Sens 7(10):12829–12858. https://doi.org/10.3390/rs71012829

    Article  Google Scholar 

  • Su H, Cai Y, Du Q (2017) Firefly-algorithm-inspired framework with band selection and extreme learning machine for hyperspectral image classification. IEEE J Sel Topics Appl Earth Observ Remote Sens 10:309–320

    Article  Google Scholar 

  • Su H, Du Q, Chen G, Du P (2014) Optimized hyperspectral band selection using particle swarm optimization. IEEE J Selected Topics in Appl Earth Observ Remote Sens 7(6):2659–2670

    Article  Google Scholar 

  • Sun K, Geng X, Ji L (2015) Exemplar component analysis: A fast band selection method for hyperspectral imagery. IEEE Geosci Remote Sens Lett 12(5):998–1002

    Article  Google Scholar 

  • Sun Y, Wang S, Liu Q, Hang R, Liu G (2017) Hypergraph embedding for spatial-spectral joint feature extraction in hyperspectral images. Remote Sens 9(5):506. https://doi.org/10.3390/rs9050506

    Article  Google Scholar 

  • Valle YD, Venayagamoorthy GK, Mohagheghi S, Hernandez JC, Harley RG (2008) Particle swarm optimization: basic concepts, variants and applications in power system. IEEE Trans Evol Comput 12(2):171–195. https://doi.org/10.1109/TEVC.2007.896686

    Article  Google Scholar 

  • Wang Q, Lin J, Yuan Y (2016) Salient band selection for hyperspectral image classification via manifold ranking. IEEE Trans Neural Netw Learn Syst 27(6):1279–1289

    Article  Google Scholar 

  • Xie C, Zou X, Xia X, Wang Z (2015) A multi-objective particle swarm optimization algorithm integrating multiply strategies. Acta Electron Sin 43:1538–1544

    Google Scholar 

  • Xu M, Shi J, Chen W, Shen J, Gao H, Zhao J (2018) A Band selection method for hyperspectral image based on particle swarm optimization algorithm with dynamic sub-swarms. J Signal Process Syst 90(8–9):1269–1279.

    Article  Google Scholar 

  • Yuan Y, Zheng X, Lu X (2017) Discovering diverse subset for unsupervised hyperspectral band selection. IEEE Trans Image Process 26(1):51–64

    Article  MathSciNet  Google Scholar 

  • Zhang M, Ma J, Gong M (2017) Unsupervised hyperspectral band selection by fuzzy clustering with particle swarm optimization. IEEE Geosci Remote Sens Lett 14(5):773–777

    Article  Google Scholar 

  • Zhang W, Li X, Zhao L (2018) A fast hyperspectral feature selection method based on band correlation analysis. IEEE Geosci Remote Sens Lett 15(11):1750–1754

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arati Paul.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, A., Chaki, N. Band selection using spectral and spatial information in particle swarm optimization for hyperspectral image classification. Soft Comput 26, 2819–2834 (2022). https://doi.org/10.1007/s00500-022-06821-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-022-06821-6

Keywords

Navigation