Skip to main content
Log in

Semi-supervised orthogonal discriminant analysis with relative distance : integration with a MOO approach

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

In discriminant analysis, trace ratio is an important criterion for minimizing the between-class similarity and maximizing the within-class similarity, simultaneously. In brief, we address the trace ratio problem associated with many semi-supervised discriminant analysis algorithms as they use the normal Euclidean distances between training data samples. Based on this problem, we propose a new semi-supervised orthogonal discriminant analysis technique with relative distance constraints called SSODARD. Different from the existing semi-supervised dimensionality reduction algorithms, our algorithm is more consistent in propagating the label information from the labeled data to the unlabeled data because of the use of relative distance function instead of normal Euclidean distance function. For finding this appropriate relative distance function, we use pairwise constraints generated from labeled data and satisfy them using Bregman projection. Since the projection is not orthogonal, we require an appropriate subset of constraints. In order to select such a subset of constraints, we further develop a framework called MO-SSODARD, which uses evolutionary algorithm while optimizing various validity indices simultaneously. The experimental results on various datasets show that our proposed approaches are superior than the state-of-the-art discriminant algorithms with respect to various validity indices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Baldi P, Long AD (2001) A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes. Bioinformatics 17(6):509–519

    Article  Google Scholar 

  • Belhumeur PN, Hespanha JP, Kriegman DJ (1997) Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 19(7):711–720

    Article  Google Scholar 

  • Belkin M, Niyogi P, Sindhwani V (2006) Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J Mach Learn Res 7(Nov):2399–2434

    MathSciNet  MATH  Google Scholar 

  • Blum A, Mitchell T (1998) Combining labeled and unlabeled data with co-training. In: Proceedings of the eleventh annual conference on computational learning theory, pp 92–100. ACM

  • Cai D, He X, Han J (2007) Semi-supervised discriminant analysis. In: IEEE 11th international conference on computer vision, 2007. ICCV 2007, pp 1–7. IEEE

  • Chen LF, Liao HYM, Ko MT, Lin JC, Yu GJ (2000) A new IDA-based face recognition system which can solve the small sample size problem. Pattern Recognit 33(10):1713–1726

    Article  Google Scholar 

  • Chung MK (2012) Gaussian kernel smoothing. Lecture notes, pp 1–10

  • Ciro GC, Dugardin F, Yalaoui F, Kelly R (2016) A nsga-ii and nsga-iii comparison for solving an open shop scheduling problem with resource constraints. IFAC-PapersOnLine 49(12):1272–1277

    Article  Google Scholar 

  • Corne DW, Knowles JD, Oates MJ (2000) The pareto envelope-based selection algorithm for multiobjective optimization. In: International conference on parallel problem solving from nature, pp 839–848. Springer

  • Das I, Dennis JE (1998) Normal-boundary intersection: a new method for generating the pareto surface in nonlinear multicriteria optimization problems. SIAM J Optim 8(3):631–657

    Article  MathSciNet  Google Scholar 

  • Deb K (2014) Multi-objective optimization. In: Search methodologies, pp 403–449. Springer

  • Deb K, Jain H (2014) An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: solving problems with box constraints. IEEE Trans Evol Comput 18(4):577–601

    Article  Google Scholar 

  • Deb K, Pratap A, Agarwal S, Meyarivan TAMT (2002) A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans Evol Comput 6(2):182–197

    Article  Google Scholar 

  • Duchene J, Leclercq S (1988) An optimal transformation for discriminant and principal component analysis. IEEE Trans Pattern Anal Mach Intell 10(6):978–983

    Article  Google Scholar 

  • Fisher Ronald A (1936) The use of multiple measurements in taxonomic problems. Annals Hum Genet 7(2):179–188

    Google Scholar 

  • Hand DJ (1982) Kernel discriminant analysis. JOHN WILEY & SONS, INC., ONE WILEY DR., SOMERSET, N. J. 08873, 1982, 264

  • He X, Niyogi P (2004) Locality preserving projections. In: Advances in neural information processing systems, pp 153–160

  • Huang S, Elgammal A, Huangfu L, Yang D, Zhang X (2014) Globality-locality preserving projections for biometric data dimensionality reduction. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 15–20

  • Huang Yi, Xu Dong, Nie Feiping (2012) Semi-supervised dimension reduction using trace ratio criterion. IEEE Trans Neural Netw Learn Syst 23(3):519–526

    Article  Google Scholar 

  • Izenman AJ (2013) Linear discriminant analysis. In: Modern multivariate statistical techniques, pp 237–280. Springer

  • Jain H, Deb K (2014) An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part ii: handling constraints and extending to an adaptive approach. IEEE Trans Evol Comput 18(4):602–622

    Article  Google Scholar 

  • Jin Z, Yang JY, Hu ZS, Lou Z (2001) Face recognition based on the uncorrelated discriminant transformation. Pattern Recognit 34(7):1405–1416

    Article  Google Scholar 

  • Joachims T (1999) Transductive inference for text classification using support vector machines. In: ICML, vol 99, pp 200–209

  • Krzanowski WJ, Jonathan P, McCarthy WV, Thomas MR (1995) Discriminant analysis with singular covariance matrices: methods and applications to spectroscopic data. Appl Stat 44(1):101–115

    Article  Google Scholar 

  • Kulis B, Sustik MA, Dhillon IS (2009) Low-rank kernel learning with bregman matrix divergences. J Mach Learn Res 10(Feb):341–376

    MathSciNet  MATH  Google Scholar 

  • Li Ming, Yuan Baozong (2005) 2d-lda: a statistical linear discriminant analysis for image matrix. Pattern Recognit Lett 26(5):527–532

    Article  Google Scholar 

  • Lu J, Zhou X, Tan YP, Shang Y, Zhou Jie (2012) Cost-sensitive semi-supervised discriminant analysis for face recognition. IEEE Trans Inf Forensics Secur 7(3):944–953

    Article  Google Scholar 

  • Mao-Guo G, Li-Cheng J, Dong-Dong Y, Wen-Ping M (2009) Evolutionary multi-objective optimization algorithms

  • Mishra S, Saha S, Mondal S (2016) Divide and conquer based non-dominated sorting for parallel environment. In: 2016 IEEE congress on evolutionary computation (CEC), pp 4297–4304. IEEE

  • Murata T, Ishibuchi H (1995) Moga: multi-objective genetic algorithms. In: IEEE international conference on evolutionary computation, 1995. vol 1, p 289. IEEE

  • Nie F, Xiang S, Jia Y, Zhang C (2009) Semi-supervised orthogonal discriminant analysis via label propagation. Pattern Recognit 42(11):2615–2627

    Article  Google Scholar 

  • Nie F, Xu D, Tsang IWH, Zhang C (2010) Flexible manifold embedding: a framework for semi-supervised and unsupervised dimension reduction. IEEE Trans Image Process 19(7):1921–1932

    Article  MathSciNet  Google Scholar 

  • Rao CR (1948) The utilization of multiple measurements in problems of biological classification. J R Stat Soc Ser B (Methodological) 10(2):159–203

    MathSciNet  MATH  Google Scholar 

  • Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323–2326

    Article  Google Scholar 

  • Seada H, Deb K (2015) U-nsga-iii: a unified evolutionary optimization procedure for single, multiple, and many objectives: proof-of-principle results. In: International conference on evolutionary multi-criterion optimization, pp 34–49. Springer

  • Si S, Tao D, Geng B (2010) Bregman divergence-based regularization for transfer subspace learning. IEEE Trans Knowl Data Eng 22(7):929–942

    Article  Google Scholar 

  • Srinivas N, Deb K (1994) Multiobjective optimization using nondominated sorting in genetic algorithms. Evolu Comput 2(3):221–248

    Article  Google Scholar 

  • Sugiyama M, Idé T, Nakajima S, Sese J (2010) Semi-supervised local fisher discriminant analysis for dimensionality reduction. Mach Learn 78(1–2):35

    Article  MathSciNet  Google Scholar 

  • Wang H, Yan S, Xu D, Tang X, Huang T (2007) Trace ratio vs. ratio trace for dimensionality reduction. In: IEEE Conference on computer vision and pattern recognition, 2007. CVPR’07. pp 1–8. IEEE

  • Wang Sheng, Lu Jianfeng, Gu Xingjian, Du Haishun, Yang Jingyu (2016) Semi-supervised linear discriminant analysis for dimension reduction and classification. Pattern Recognit 57:179–189

    Article  Google Scholar 

  • Wang Xiaogang, Tang Xiaoou (2004) Dual-space linear discriminant analysis for face recognition. In: Proceedings of the 2004 IEEE computer society conference on computer vision and pattern recognition, 2004. CVPR 2004. vol 2, pp II–II. IEEE

  • Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chemom Intell Lab Syst 2(1–3):37–52

    Article  Google Scholar 

  • Xu Y, Pan SJ, Xiong H, Wu Q, Luo Ronghua, Min Huaqing, Song Hengjie (2017) A unified framework for metric transfer learning. IEEE Trans Knowl Data Eng 29(6):1158–1171

    Article  Google Scholar 

  • Ye J, Li Q (2005) A two-stage linear discriminant analysis via qr-decomposition. IEEE Trans Pattern Anal Mach Intell 27(6):929–941

    Article  Google Scholar 

  • Yu W, Teng X, Liu C (2006) Face recognition using discriminant locality preserving projections. Image Vision Comput 24(3):239–248

    Article  Google Scholar 

  • Zhang Y, Yeung DY (2008a) Semi-supervised discriminant analysis using robust path-based similarity. In: IEEE conference on computer vision and pattern recognition, 2008. CVPR 2008. pp 1–8. IEEE

  • Zhang Y, Yeung DY (2008b) Semi-supervised discriminant analysis via cccp. In: Joint European conference on machine learning and knowledge discovery in databases, pp 644–659. Springer

  • Zhou D, Bousquet O, Lal TN, Weston J, Schölkopf B (2004) Learning with local and global consistency. In: Advances in neural information processing systems, pp 321–328

  • Zitzler E, Laumanns M, Thiele L (2001) Spea2: improving the strength pareto evolutionary algorithm. TIK-report, 103

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Kumar Sanodiya.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human participants

This study does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by V. Loia.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanodiya, R.K., Saha, S. & Mathew, J. Semi-supervised orthogonal discriminant analysis with relative distance : integration with a MOO approach. Soft Comput 24, 1599–1618 (2020). https://doi.org/10.1007/s00500-019-03990-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-019-03990-9

Keywords

Navigation