Skip to main content

Advertisement

Log in

Multi-view 3D reconstruction and modeling of the unknown 3D scenes using genetic algorithms

  • Foundations
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

This paper presents a complete pipeline of the reconstruction and the modeling of the unknown complex 3D scenes from a sequence of unconstrained images. The proposed system is based on the formulation of a nonlinear cost function by determining the relationship between 2D points of the images and the cameras parameters; the optimization of this function by a genetic algorithm makes finding the optimal cameras parameters. The determination of these parameters allows thereafter to estimate the 3D points of the observed scene. Then, the mesh of the 3D points is achieved by 3D Crust algorithm and the texture mapping is performed by multiple dependent viewpoints. Extensive experiments on synthetic and real data are performed to validate the proposed approach, and the results indicate that our system is robust and can achieve a very satisfactory reconstruction quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Amenta N (1999) The crust algorithm for 3D surface reconstruction. In: Proceedings of symposium on computational geometry, pp 423–424

  • Amenta N, Choi S, Kolluri RK (2001) The power crust. In: Proceedings of the sixth ACM symposium on solid modeling and applications, University of Texas at Austin, pp 249–266

  • Anam S, Islam MS, Kashem MA, Islam MN, Islam MR, Islam MS (2009) Face recognition using genetic algorithm and back propagation neural network. In: International multi conference of engineers and computer scientists, vol I

  • Baumgart BG et al (1974) Geometric modeling for computer vision. Doctoral dissertation, Stanford University

  • Cazals F, Giesen J (2004) Delaunay triangulation based surface reconstruction: ideas and algorithms. Technical report, RR-5393, INRIA

  • Chang CC, Kuo Y-T (2008) Genetic-based approach for synthesizing texture. Int J Artif Intell Tools 17(04):731–743

    Article  Google Scholar 

  • Craciun DI (2011) Modélisation des équivalents dynamiques des réseaux électriques. Thèse, Université de Grenoble, p 174

  • Dipanda A, Woo S, Marzani F, Bilbault JM (2003) 3D shape reconstruction in an active stereo vision system using genetic algorithms. J Pattern Recognit Soc 36:2143–2159

    Article  MATH  Google Scholar 

  • El Hazzat S, Saaidi A, Satori K (2014) Euclidean 3D reconstruction of unknown objects from multiple images. J Emerg Technol Web Intell 6(1):59–63

    Google Scholar 

  • Faugeras O, Luong QT, Papadopoulou T (2001) The geometry of multiple images: the laws that govern the formation of images of a scene and some of their applications. MIT Press, Cambridge

    MATH  Google Scholar 

  • Franco J (2010) Efficient polyhedral modeling from silhouettes. IEEE Trans Pattern Anal Mach Intell 31(3):853–861

    Google Scholar 

  • Fuhrmann S et al (2015) MVE—an image-based reconstruction environment. Comput Graph 53:44–53

    Article  Google Scholar 

  • Furukawa Y, Ponce J (2010) Accurate, dense, and robust multi-view stereopsis. Trans Pattern Anal Mach Intell 32(8):1362–1376

    Article  Google Scholar 

  • Furukawa Y, Curless B, Seitz SM, Szeliski R (2010) Towards internet-scale multi-view stereo. In: Conference on computer vision and pattern recognition

  • Goldberg DE (1989) Genetic algorithms in search, optimization & machine learning. Addison-Wesley, Boston

    MATH  Google Scholar 

  • Goldberg DE, Deb K (1991) A comparative analysis of selection scheme used in genetic algorithms. In: Rawlins G (ed) Foundations of genetic algorithms. Morgan Kaufman, San Mateo, pp 69–93

    Google Scholar 

  • Harris C, Stephens M (1988) A combined corner et edge detector. In: 4th Alvey vision conference, pp 147–151

  • Hartley RI, Zisserman A (2000) Multiple view geometry in computer vision. Cambridge University Press, Cambridge, p 265. ISBN: 0521623049

  • Holland JH (1992) Adaptation in natural and artificial systems. MIT Press, Cambridge

    Google Scholar 

  • Hornung A, Kobbelt L, (2006) Robust reconstruction of watertight 3D models from non-uniformly sampled point-clouds without normal information. In: Eurographics symposium on geometry processing, pp 41–50

  • Janko Z, Chetverikov D, Ekart A (1995) Using genetic algorithms in computer vision: registering images to 3D surface model. Acta Cybern 18(2):193–212

    MATH  Google Scholar 

  • Jean-Denis D, Adrien B, Pierre G (1998) Interactive 3D modeling from multiple images using scene regularities. Lecture notes in computer science, vol, 1506, pp 236–252

  • Jean-Denis D, Adrien B, Pierre G (2010) Shape-from-texture revisited. In: Francophone congress of pattern recognition and artificial intelligence, pp 1–8

  • Johnson CM, Bhat A, et Thibault W (2006) An evolutionary approach to camera-based projector calibration. In: Genetic and evolutionary computation conference, pp 1871–1872

  • Kazhdan M, Hoppe H (2013) Screened Poisson surface reconstruction. ACM Trans Graph 32(3):1–29

    Article  MATH  Google Scholar 

  • Kolev K, Klodt M et al (2009) Continuous global optimization in multiview 3D reconstruction. Int J Comput Vis 4(1):80–96

    Article  Google Scholar 

  • Kolev K, Brox T, Cremers D (2012) Fast joint estimation of silhouettes and dense 3D geometry from multiple images. Trans Pattern Anal Mach Intell 34(3):493–505

    Article  Google Scholar 

  • Kutulakos KN, Seitz SM (2000) A theory of shape by space carving. Int J Comput Vis 38(3):199–218

    Article  MATH  Google Scholar 

  • Lobay A, Forsyth DA (2006) Shape from texture without boundaries. Int J Comput Vis 67(1):71–91

    Article  Google Scholar 

  • Loh M, Hartley R (2005) Shape from non homogeneous, non-stationary, anisotropic, perspective texture. In: BMVC’05. Royaume-Uni, Oxford, pp 69–78

  • Ma Y, Soatto S, Kosecka J, Sastry SS (2003) An invitation to 3-D vision: from images to geometric models. Springer, Berlin

    MATH  Google Scholar 

  • Matusik W, Buehler C, McMillan L (2001) Polyhedral visual hulls for real-time rendering. In: Euro graphics workshop on rendering, pp 115–125

  • Merras M, El Akkad N, Saaidi A, Nazih AG, Satori K (2014) Camera calibration with varying parameters based on improved genetic algorithm. WSEAS Trans Comput 13:129–137

    Google Scholar 

  • Merras M et al (2015) Camera self calibration with varying parameters by an unknown three dimensional scene using the improved genetic algorithm. 3D Res 6(1):1–14

    Article  Google Scholar 

  • Merras M, El Hazzat S, Saaidi A, Nazih AG, Satori K (2016) 3D face reconstruction using images from cameras with varying parameters. Int J Autom Comput. https://doi.org/10.1007/s11633-016-0999-x

    Google Scholar 

  • Nguyen MH et al (2011) Modeling of 3D object using unconstrained and uncalibrated images taken with a handheld camera. Comput Vis Imaging Comput Graph Theory Appl 274:1–5

    Google Scholar 

  • Nguyen MH et al (2013) A hybrid image base modeling algorithm. In: Proceedings of the thirty sixth Australasian computer sciences conference, vol 135, pp 115–123

  • Nistér D (2005) Preemptive RANSAC for live structure and motion estimation. Mach Vis Appl 16(5):321–329

    Article  Google Scholar 

  • Olsson C, Enqvist O (2011) Stable structure from motion for unordered image collections. In: Scandinavian conference on image analysis, SCIA 2011

  • Pighin F (2002) Modeling and animating realistic faces from images. Int J Comput Vis 50(2):143–169

    Article  MATH  Google Scholar 

  • Pighin F, Hecker J, Dani L, Richard S, Salesin DH (1998) Synthesizing realistic facial expressions from photographs. Comput Graph. https://doi.org/10.1145/280814.280825

    Google Scholar 

  • Pollefeys M, Koch R, Gool LV (1999) Self-calibration and metric reconstruction in spite of varying and unknown internal camera parameters. Int J Comput Vis 32(1):7–25

    Article  Google Scholar 

  • Quan L et al (2006) Image-based plant modeling. ACM Trans Graph 25(3):599–604

    Article  MathSciNet  Google Scholar 

  • Ren Z-W, San Y, Chen J-F (2007) Hybrid implex-improved genetic algorithm for global numerical optimization. Acta Autom Sin 33(1):91–95

    Article  Google Scholar 

  • Roberts R, Szeliski R (2011) Structure from motion for scenes with large duplicate structures. In: Computer vision and pattern recognition, pp 3137–3144

  • Saaidi A, Tairi H, Satori K (2006) Fast stereo matching using rectification and correlation techniques. In: ISCCSP, second international symposium on communications, control and signal processing. Marrakech, Morrocco, pp 1–4

  • Salman N, Yvinec M (2010) Surface reconstruction from multi-view stereo of large-scale outdoor scenes. Int J Virtual Real 5(3):1–6

    Google Scholar 

  • Seitz S, Curless B, Diebel J, Scharstein D, Szeliski R (2006) A comparison and evaluation of multi-view stereo reconstruction algorithms. In: Conference on computer vision and pattern recognition

  • Snavely N, Seitz SM, Szeliski R (2006) Photo tourism: exploring photo collections in 3D. ACM Trans Graph 25:835–846

    Article  Google Scholar 

  • Tan P et al (2006) Image based tree graphics. ACM Trans Graph 27(3):418–433

    Google Scholar 

  • Triggs B, McLauchlan P, Hartley RI, Fitzgibbon A (1999) Bundle adjustment—a modern synthesis. In: Vision algorithms, pp 298–372

  • Wang G, Wu QMJ (2009) Perspective 3-d Euclidean reconstruction with varying camera parameters. IEEE Trans Circuits Syst Video Technol 19(12):1793–1803

    Article  Google Scholar 

  • Wilczkowiak M, Boyer E, Sturm P (2001) Camera calibration and 3D reconstruction from single images using parallelepipeds. In: ICCV. Vancouver, Canada, pp 142–148

  • Wojciech et al (2000) Image based visual hulls. In: 27th conference on computer graphics and interactive techniques, pp 369–374

  • Wu C (2013) Towards linear-time incremental structurefrom motion. In: International conference on 3D vision, pp 127–134

  • Wu C, Agarwal S, Curless B, Seitz S (2011) Multicore bundle adjustment. In: Conference on computer vision and pattern recognition, pp 3057–3064

  • Xiao J et al (2008) Image based façade modeling. ACM Trans Graph 27(5):26–34

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa Merras.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Communicated by A. Di Nola.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merras, M., Saaidi, A., El Akkad, N. et al. Multi-view 3D reconstruction and modeling of the unknown 3D scenes using genetic algorithms. Soft Comput 22, 6271–6289 (2018). https://doi.org/10.1007/s00500-017-2966-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-017-2966-z

Keywords

Navigation