Skip to main content
Log in

Triangular dense fuzzy lock sets

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

This article deals with a triangular dense fuzzy set having special property on Cauchy sequence. In this set, the normality will never be attained unless we unlock by a special key on triangular dense fuzzy set at its final defuzzified state. We give several definitions on triangular dense fuzzy lock sets first and then discuss its locking unlocking property for single-key, double-key, and multiple keys environments with special reference to the convergence of Cauchy sequence. The non-membership function of the proposed lock set has also been studied. The graphical representations of the (non-)membership functions are developed, and the defuzzifications are done by existing methods of dense fuzzy sets as well as cloudy fuzzy sets implicitly. However, we have extended this fuzzy lock set into fuzzy lock matrix to generalize the concept. Finally, we discuss the fields of its practical application and draw a conclusion for better motivation.

Graphical Abstract of the Triangular Dense fuzzy lock sets

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allahviranloo T, Saneifard R (2012) Defuzzification method for ranking fuzzy numbers based on center of gravity. Iran J Fuzzy Syst 9(6):57–67

    MATH  Google Scholar 

  • Angelov PP (1997) Optimization in an intuitionistic fuzzy environment. Fuzzy Sets Syst 86:299–306

    Article  MathSciNet  Google Scholar 

  • Atanassov K (1986) Intuitionistic fuzzy sets and system. Fuzzy Sets Syst 20:87–96

    Article  Google Scholar 

  • Baruah HK (1999a) Set superimposition and its application to the theory of fuzzy sets. J Assam Sci Soc 40(1):25–31

    Google Scholar 

  • Baruah HK (1999b) Fuzzy membership with respect to a reference function. J Assam Sci Soc 40(3):65–73

    Google Scholar 

  • Baruah HK (2010a) The mathematics of fuzziness: myths and realities. Lambert Academic Publishing, Saarbrucken

    Google Scholar 

  • Baruah HK (2010b) The randomness—fuzziness consistency principle. Int J Energy Inf Commun 1(1):37–48

    Google Scholar 

  • Baruah HK (2011) Construction of the membership function of a fuzzy number. ICIC Express Lett 5:545–549

    Article  Google Scholar 

  • Bellman RE, Zadeh LA (1970) Decision making in a fuzzy environment. Manag Sci 17:B141–B164

    Article  MathSciNet  Google Scholar 

  • Bobylev VN (1985) Cauchy problem under fuzzy control. BUSEFAL 21:117–126

    MATH  Google Scholar 

  • Bobylev VN (1988) On the reduction of fuzzy numbers to real. BUSEFAL 35:100–104

    Google Scholar 

  • Buckley JJ (1988) Generalized and extended fuzzy sets with applications. Fuzzy Sets Syst 25:159–174

    Article  MathSciNet  Google Scholar 

  • Cagman N, Enginoglu S, Citak F (2011) Fuzzy soft theory and its application. Int J Fuzzy Syst 8(3):137–147

    MathSciNet  MATH  Google Scholar 

  • Cheng CH (1998) A new approach for ranking fuzzy numbers by distance method. Fuzzy sets Syst 95:307–317

    Article  MathSciNet  Google Scholar 

  • Chutia R, Mahanta S, Baruah HK (2010) An alternative method of finding the membership of a fuzzy number. Int J Latest Trends Comput 1(1):69–72

    Google Scholar 

  • De SK, Mahata GC (2016) Decision of a fuzzy inventory with fuzzy backorder model under cloudy fuzzy demand rate. Int J Appl Comput Math doi:10.1007/s.40819-016-0258-4

  • De SK, Sana SS (2015) An EOQ model with backlogging. Int J Manag Sci Eng Manag doi:10.1080/17509653.2014.995736

    Article  Google Scholar 

  • De SK, Beg I (2016a) Triangular dense fuzzy sets and new defuzzification methods. Int J Intell fuzzy Syst 31(1):469–477

    MATH  Google Scholar 

  • De SK, Beg I (2016b) Triangular dense fuzzy Neutrosophic sets. Neutrosophic Sets Syst 13:1–12

    Google Scholar 

  • Deng H (2014) Comparing and ranking fuzzy numbers using ideal solutions. Appl Math Model 38:1638–1646

    Article  MathSciNet  Google Scholar 

  • Diamond P (1989) The structure of type k fuzzy numbers. In: Bezdek JC (ed) The coming of age of fuzzy logic. University of Washington, Seattle, pp 671–674

  • Diamond P (1990) A note on fuzzy star shaped fuzzy sets. Fuzzy Sets Syst 37:193–199

    Article  Google Scholar 

  • Diamond P, Kloeden PE (1989) Characterization of compact sets of fuzzy sets. Fuzzy Sets Syst 29:341–348

    Article  Google Scholar 

  • Diamond P, Kloeden PE (1991) Parametrization of fuzzy sets by single valued mappings. In: Proceedings of 4th IFSA, Brussels, pp 42–45

  • Dubois D, Prade H (1978) Operations on fuzzy numbers. Int J Syst Sci 30:613–626

    Article  MathSciNet  Google Scholar 

  • Dubois D, Prade H (1990) Rough fuzzy sets and fuzzy rough sets. Int J Gen Syst 17:91–209

    Article  Google Scholar 

  • Ezzati R, Allahviranloo T, Khezerloo S, Khezerloo M (2012) An approach for ranking of fuzzy numbers. Expert Syst Appl 39:690–695

    Article  Google Scholar 

  • Goetschel R, Voxman J (1985) Eigen fuzzy number sets. Fuzzy Sets Syst 16:75–85

    Article  MathSciNet  Google Scholar 

  • Hajjari T, Abbasbandy S (2011) A note on the revised method of ranking LR fuzzy number based on deviation degree. Expert Syst Appl 39:13491–13492

    Article  Google Scholar 

  • Heilpern S (1981) Fuzzy mappings and fixed point theorem. J Math Anal Appl 83:566–569

    Article  MathSciNet  Google Scholar 

  • Karmakar S, De SK, Goswami A (2015) A deteriorating EOQ model for natural idle time and imprecised demand: Hesitant fuzzy approach, Int J Syst Sci Op Logist doi:10.1080/23302674.2015.1087070

    Google Scholar 

  • Karmakar S, De SK, Goswami A (2017) A Pollution sensitive dense fuzzy economic production quantity model with cycle time dependent production rate. J Clean Prod doi:10.1016/j.jclepro.2017.03.080

    Article  Google Scholar 

  • Kaufmann A, Gupta MM (1992) Introduction to fuzzy arithmetic theory and applications. Van Nostrand Reinhold, New York

    MATH  Google Scholar 

  • Mahanta S, Chutia R, Baruah HK (2010) Fuzzy arithmetic without using the method of \(\alpha \)—cuts. Int J Latest Trends Comput 1:73–80

    Google Scholar 

  • Molodtsov D (1999) Soft set theory-first results. Comput Math Appl 37:19–31

    Article  MathSciNet  Google Scholar 

  • Pawlak Z (1982) Rough sets. Int J Inf Comput Sci 11:341–356

    Article  Google Scholar 

  • Rezvani S (2015) Ranking generalized exponential trapezoidal fuzzy numbers based on variance. Appl Math Comput 262:191–198

    MathSciNet  MATH  Google Scholar 

  • Roy AR, Maji PK (2010) A fuzzy soft theoretic approach to decision making problems. J Comput Appl Math 203:412–418

    Article  Google Scholar 

  • Roychoudhury S, Pedrycz W (2003) An alternative characterization of fuzzy complement functional, soft computing—a fusion of foundations. Methodol Appl 7:563–565

    Google Scholar 

  • Smarandache F (2005) Neutrosophic set, a generalization of the intuitionistic fuzzy sets. Int J Pure Appl Math 24:287–297

    MathSciNet  MATH  Google Scholar 

  • Torra V (2010) Hesitant fuzzy sets. Int J Intell Syst 25(6):529–539

    MATH  Google Scholar 

  • Wang ZX, Liu YJ, Fan ZP, Feng B (2009) Ranking L–R fuzzy number based on deviation degree. Inf Sci 179:2070–2077

    Article  MathSciNet  Google Scholar 

  • Xu P, Su X, Wu J, Sun X, Zhang Y, Deng Y (2012) A note on ranking generalized fuzzy numbers. Expert Syst Appl 39:6454–6457

    Article  Google Scholar 

  • Yager RR (1981) A procedure for ordering fuzzy subsets of the unit interval. Inf Sci 24:143–161

    Article  MathSciNet  Google Scholar 

  • Yu VF, Chi HTX, Dat LQ, Phuc PNK, Shen CW (2013) Ranking generalized fuzzy numbers in fuzzy decision making based on the left and right transfer coefficients and areas. Appl Math Model 37:8106–8117

    Article  MathSciNet  Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–356

    Article  Google Scholar 

  • Zadeh LA (1973) Outline of a new approach to the analysis of complex systems and decision process. IEEE Trans Syst Man Cybern SMC–3:28–44

    Article  MathSciNet  Google Scholar 

  • Zadeh LA (1975) The concept of linguistic variable and its application to approximate reasoning. Inf Sci 1:199–249

    Article  MathSciNet  Google Scholar 

  • Zadeh LA (1996) Fuzzy logic = computing with words. IEEE Trans Fuzzy Syst 4:103–111

    Article  Google Scholar 

  • Zhang F, Ignatius J, Lim CP, Zhao Y (2014) A new method for ranking fuzzy numbers and its application to group decision making. Appl Math Model 38:1563–1582

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Editor-in-chief, Associate editors and the anonymous reviewers for their valuable and constructive comments which have led to a significant improvement of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujit Kumar De.

Ethics declarations

Conflict of interest

The authors have no conflict of interest regarding the publication of this article.

Additional information

Communicated by V. Loia.

Appendix

Appendix

To check the justification of considering the triangular fuzzy lock set as \(\widetilde{A} =<a\left( {1-\rho } \right) f_n ,\,a\,,\,a\left( {1+\sigma } \right) f_n >, for\,0<{\rho },\,\sigma \in {\mathcal {R}}\) such that as \(n\rightarrow {\infty }, f_n \rightarrow \frac{1}{k},\,k\ne 0\). Then k ( depends upon \(\rho ,\,\sigma \)) is called the key of the lock set \(\widetilde{A}\). In particular we assume, \(\widetilde{A} =<a\left\{ {1-\rho \left( {\frac{1}{k}-\frac{1}{n+1}} \right) } \right\} ,\,a,a\left\{ {1+\sigma \left( {\frac{1}{k}-\frac{1}{n+1}} \right) } \right\}>\) whose membership function is given by

$$\begin{aligned} \mu \left( {x,\,n} \right) =\left\{ {{\begin{array}{l} {0\qquad for \, x\, \le a\left( {1-\rho f_n } \right) \,\,or\,a\left( {1+\sigma f_n } \right) \le x} \\ {\frac{x-a\left( {1-\rho f_n } \right) }{a\rho f_n }for\,a\left( {1-\rho f_n} \right) \le x \le a} \\ {\frac{a\left( {1+\sigma f_n } \right) -x}{a\sigma f_n }\,for\,a\le x\le a\left( {1+\sigma f_n } \right) } \end{array} }} \right. \end{aligned}$$

Now to check whether the membership function \(\mu \left( {x,n} \right) \) gets values within [0,1] or not.

We assume, for strong fuzzy set, \(\rho f_n<1\Rightarrow \rho <1/f_n \) and \(\sigma f_n<1\Rightarrow \sigma <1/f_n \) and that for weak fuzzy set, \(\rho f_n \ge 1\Rightarrow \rho \ge 1/f_n \) and \(\sigma f_n \ge 1\Rightarrow \sigma \ge 1/f_n \).

In particular, \(f_n =\left( {\frac{1}{k}-\frac{1}{n+1}} \right) \Rightarrow \hbox {as }n\rightarrow \infty ,\, f_n \rightarrow \frac{1}{k},k\ne 0\). Thus, for strong fuzzy set, we have \(\rho<k\,and\,\sigma <k\) and that for weak fuzzy set \(\rho \ge k\,and\,\sigma \ge k\).

Moreover, the ratio \(\frac{x-a\left( {1-\rho f_n } \right) }{a\rho f_n }\) always lies between [0,1] as because, we always have \(a\left( {1-\rho f_n } \right) \le x\le a \Rightarrow 0<x-a\left( {1-\rho f_n } \right) <a\rho f_n \Rightarrow 0\le \frac{x-a\left( {1-\rho f_n } \right) }{a\rho f_n }\le 1\). In particular, let \(x=\left[ {a+a\left( {1-\rho f_n } \right) } \right] /2\) then \(\frac{x-a\left( {1-\rho f_n } \right) }{a\rho f_n }=\frac{a-a\rho f_n /2-a\left( {1-\rho f_n } \right) }{a\rho f_n }=\frac{a\rho f_n /2}{a\rho f_n }=\frac{1}{2}\in \left[ {0,1} \right] \) and so on.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De, S.K. Triangular dense fuzzy lock sets. Soft Comput 22, 7243–7254 (2018). https://doi.org/10.1007/s00500-017-2726-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-017-2726-0

Keywords

Navigation