Skip to main content
Log in

Solving nonlinear fuzzy differential equations by using fuzzy variational iteration method

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

In this paper, the fuzzy variational iteration method is proposed to solve the nonlinear fuzzy differential equation (NFDE). The convergence and the maximum absolute truncation error of the proposed method are proved in details. Some examples are investigated to verify convergence results and to illustrate the efficiently of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbasbandy S, Allahviranloo T (2002) Numerical solutions of fuzzy differential equations by Taylor method. J Comput Methods Appl Math 2:113–124

    MathSciNet  Google Scholar 

  • Abbasbandy S, Allahviranloo T, Lopez-Pouso O, Nieto JJ (2004) Numerical methods for fuzzy differential inclusions. Comput Math Appl 48:1633–1641

    Article  MathSciNet  MATH  Google Scholar 

  • Abbasbandy S, Nieto JJ, Alavi M (2005) Tuning of reachable set in one dimensional fuzzy differential inclusions. Chaos Solitons Fract 26:1337

    Article  MathSciNet  MATH  Google Scholar 

  • Abbod MF, Von Keyserlingk DG, Linkens DA, Mahfouf M (2001) Survey of utilisation of fuzzy technology in medicine and healthcare. Fuzzy Sets Syst 120:331–349

    Article  Google Scholar 

  • Allahviramloo T (2005) The Adomian decomposition method for fuzzy system of linear equations. Appl Math Comput 163:553– 563

    Google Scholar 

  • Allahviranloo T, Ahmady N, Ahmady E (2007) Numerical solution of fuzzy differential equations by predictor–corrector method. Inf Sci 177:1633–1647

    Article  MathSciNet  MATH  Google Scholar 

  • Barro S, Marin R (2002) Fuzzy logic in medicine. Physica-Verlag, Heidelberg

    Book  MATH  Google Scholar 

  • Bede B (2008) Note on numerical solutions of fuzzy differential equations by predictor–corrector method. Inf Sci 178:1917– 1922

    Google Scholar 

  • Bede B, Gal SG (2005) Generalizations of the differentiability of fuzzy number valued functions with applications to fuzzy differential equation. Fuzzy Set Syst 151:581–599

    Article  MathSciNet  MATH  Google Scholar 

  • Bede B, Imre J, Rudas C, Attila L (2007) First order linear fuzzy differential equations under generalized differentiability. Inf Sci 177:3627–3635

    Article  Google Scholar 

  • Buckley JJ, Feuring T (2000) Fuzzy differential equations. Fuzzy Set Syst 110:43–54

    Article  MathSciNet  MATH  Google Scholar 

  • Buckley JJ, Jowers LJ (2006) Simulating continuous fuzzy systems. Springer, Berlin

    MATH  Google Scholar 

  • Buckley JJ, Feuring T, Hayashi Y (2002) Linear systems of first order ordinary differential equations: fuzzy initial conditions. Soft Comput 6:415–421

    Google Scholar 

  • Chalco-Cano Y, Romn-Flores H (2006) On new solutions of fuzzy differential Buckley and Jowers equations. Chaos Solitons Fract: 1016–1043

  • Chalco-Cano Y, Romn-Flores, Rojas-Medar MA, Saavedra O, Jimnez-Gamero M (2007) The extension principle and a decomposition of fuzzy sets. Inf Sci 177:5394–5403

  • Chalco-Cano Y, Roman-Flores H, Jimnez-Gamero MD (2011) Generalized derivative and \(\pi \)-derivative for set-valued functions. Inf Sci 181:2177–2188

    Article  MATH  Google Scholar 

  • Chen CK, Ho SH (1999) Solving partial differential equations by two-dimensional differential transform method. Appl Math Comput 106:171–179

    Article  MathSciNet  MATH  Google Scholar 

  • Cho YJ, Lan HY (2007) The existence of solutions for the nonlinear first order fuzzy differential equations with discontinuous conditions. Dyn Contin Discrete 14:873–884

    MathSciNet  MATH  Google Scholar 

  • Congxin W, Shiji S (1993) Exitance theorem to the Cauchy problem of fuzzy differential equations under compactance-type conditions. Inf Sci 108:123–134

    Article  Google Scholar 

  • Datta DP (2003) The golden mean, scale free extension of real number system, fuzzy sets and \(1/f\) spectrum in physics and biology. Chaos Solitons Fract 17:781–788

    Article  MATH  Google Scholar 

  • Diamond P (1999) Time-dependent differential inclusions, cocycle attractors and fuzzy differential equations. IEEE Trans Fuzzy Syst 7:734–740

    Article  MathSciNet  Google Scholar 

  • Diamond P (2002) Brief note on the variation of constants formula for fuzzy differential equations. Fuzzy Set Syst 129:65–71

    Article  MathSciNet  MATH  Google Scholar 

  • Ding Z, Ma M, Kandel A (1997) Existence of solutions of fuzzy differential equations with parameters. Inf Sci 99:205–217

    Article  MathSciNet  MATH  Google Scholar 

  • Dubois D, Prade H (1980) Theory and application, fuzzy sets and systems. Academic Press, New York

    Google Scholar 

  • Dubois D, Prade H (1982) Towards fuzzy differential calculus: Part 3, differentiation. Fuzzy Set Syst 8:225–233

    Article  MathSciNet  MATH  Google Scholar 

  • El Naschie MS (2005) From experimental quantum optics to quantum gavity via a fuzzy Kahler manifold. Chaos Solitons Fract 25: 969–977

    Article  MATH  Google Scholar 

  • Fard OS (2009a) A numerical scheme for fuzzy cauchy problems. J Uncertain Syst 3:307–314

    Google Scholar 

  • Fard OS (2009b) An iterative scheme for the solution of generalized system of linear fuzzy differential equations. World Appl Sci J 7:1597–1604

    Google Scholar 

  • Fard OS, Kamyad AV (2011) Modified k-step method for solving fuzzy initial value problems. Iran J Fuzzy Syst 8(3):49–63

    MathSciNet  MATH  Google Scholar 

  • Fard OS, Hadi Z, Ghal-Eh N, Borzabadi AH (2009) A note on iterative method for solving fuzzy initial value problems. J Adv Res Sci Comput 1:22–33

    MathSciNet  Google Scholar 

  • Fard OS, Bidgoli TA, Borzabadi AH (2010) Approximate-analytical approach to nonlinear FDEs under generalized differentiability. J Adv Res Dyn Control Syst 2:56–74

    MathSciNet  Google Scholar 

  • Fei W (2007) Existence and uniqueness of solution for fuzzy random differential equations with non-Lipschitz coefficients. Inf Sci 177:329–4337

    Article  Google Scholar 

  • Feng G, Chen G (2005) Adaptative control of discrete-time chaotic system: a fuzzy control approach. Chaos Solitons Fract 23:459–467

    Article  MathSciNet  MATH  Google Scholar 

  • Goetschel R, Voxman W (1986) Elementary calculus. Fuzzy Sets Syst 18:31–43

    Article  MathSciNet  MATH  Google Scholar 

  • Guo M, Xue X, Li R (2003) Impulsive functional differential inclusions and fuzzy population models. Fuzzy Sets Syst 138:601–615

    Article  MathSciNet  MATH  Google Scholar 

  • Jang MJ, Chen CL, Liy YC (2000) On solving the initial-value problems using the differential transformation method. Appl Math Comput 115:145–160

    Article  MathSciNet  MATH  Google Scholar 

  • Jiang W, Guo-Dong Q, Bin D (2005) \(H_{\infty }\) variable universe adaptive fuzzy control for chaotic systems. Chaos Solitons Fract 24:1075–1086

    Article  MathSciNet  MATH  Google Scholar 

  • Jowers LJ, Buckley JJ, Reilly KD (2007) Simulating continuous fuzzy systems. Inf Sci 177:436–448

    Article  MathSciNet  MATH  Google Scholar 

  • Kaleva O (1987) Fuzzy differential equations. Fuzzy Set Syst 24:301–317

    Article  MathSciNet  MATH  Google Scholar 

  • Kaleva O (1990) The Cauchy problem for fuzzy differential equations. Fuzzy Set Syst 35:389–396

    Article  MathSciNet  MATH  Google Scholar 

  • Kaleva O (2006) A note on fuzzy differential equations. Nonlinear Anal 64:895–900

    Article  MathSciNet  MATH  Google Scholar 

  • Kauffman A, Gupta MM (1991) Introduction to fuzzy arithmetic: theory and application. Van Nostrand Reinhold, New York

  • Lopez RR (2008) Comparison results for fuzzy differential equations. Inf Sci 178:1756–1779

    Google Scholar 

  • Ma M, Friedman M, Kandel A (1999) Numerical solutions of fuzzy differential equations. Fuzzy Set Syst 105:133–138

    Article  MathSciNet  MATH  Google Scholar 

  • Mizukoshi MT, Barros LC, Chalco-Cano Y, Romn-Flores H, Bassanezi RC (2007) Fuzzy differential equations and the extension principle. Inf Sci 177:3627–3635

    Article  MATH  Google Scholar 

  • Nguyen HT (1978) A note on the extension principle for fuzzy sets. J Math Anal Appl 64:369–380

    Article  MathSciNet  MATH  Google Scholar 

  • Oberguggenberger M, Pittschmann S (1999) Differential equations with fuzzy parameters. Math Modul Syst 5:181–202

    MATH  Google Scholar 

  • Papaschinopoulos G, Stefanidou G, Efraimidi P (2007) Existence uniqueness and asymptotic behavior of the solutions of a fuzzy differential equation with piecewise constant argument. Inf Sci 177:3855–3870

    Article  MATH  Google Scholar 

  • Puri ML, Ralescu DA (1983) Differentials of fuzzy functions. J Math Anal Appl 91:552–558

    Article  MathSciNet  MATH  Google Scholar 

  • Puri ML, Ralescu D (1986) Fuzzy random variables. J Math Anal Appl 114:409–422

    Article  MathSciNet  MATH  Google Scholar 

  • Seikkala S (1987) On the fuzzy initial value problem. Fuzzy Set Syst 24:319–330

    Article  MathSciNet  MATH  Google Scholar 

  • Song S, Guo L, Feng C (2000) Global existence of solutions to fuzzy differential equations. Fuzzy Set Syst 115:371–376

    Article  MathSciNet  MATH  Google Scholar 

  • Solaymani Fard O, Ghal-Eh N (2011) Numerical solutions for linear system of first-order fuzzy differential equations with fuzzy constant coefficients. Inf Sci 181:4765–4779

    Article  MATH  Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inf. Control 8:338–353

    Article  MathSciNet  MATH  Google Scholar 

  • Zimmermann HJ (1991) Fuzzy sets theory and its applications. Kluwer Academic Press, Dordrecht

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sh. S. Behzadi.

Additional information

Communicated by G. Acampora.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allahviranloo, T., Abbasbandy, S. & Behzadi, S.S. Solving nonlinear fuzzy differential equations by using fuzzy variational iteration method. Soft Comput 18, 2191–2200 (2014). https://doi.org/10.1007/s00500-013-1193-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-013-1193-5

Keywords

Navigation