Skip to main content
Log in

Adaptation of the musical composition method for solving constrained optimization problems

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Many real-world problems may be expressed as nonlinear constrained optimization problems (CNOP). For this kind of problems, the set of constraints specifies the feasible solution space. In the last decades, several algorithms have been proposed and developed for tackling CNOP. In this paper, we present an extension of the “Musical Composition Method” (MMC) for solving constrained optimization problems. MMC was proposed by Mora et al. (Artif Intell Rev 1–15, doi:10.1007/s10462-011-9309-8, 2012a). The MMC is based on a social creativity system used to compose music. We evaluated and analyzed the performance of MMC on 12 CNOP benchmark cases. The experimental results demonstrate that MMC significantly improves the global performances of the other tested metaheuristics on some benchmark functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abbasian R, Mouhoub M, Jula A (2011) Solving graph coloring problems using cultural algorithms. In: Twenty-fourth international FLAIRS conference

  • Berg S (2007) Alfred’s essentials of Jazz theory: a complete self-study course for all musicians. Alfred Publishing Company, Incorporated, Van Nuys, p 120

  • Cai Z, Wang Y (2006) A multiobjective optimization-based evolutionary algorithm for constrained optimization. IEEE Trans Evol Comput 10:658–675

    Article  Google Scholar 

  • Center for Advanced Research on Language Acquisition (CARLA) (2011) U. M. What is Culture? http://www.carla.umn.edu/culture/definitions.html

  • Christakis N, Fowler J (2009) Conntected the surprising power of our social networks and how they shape our lives. Little, Brown and Company/Hachette Book Group, New York, p 368. ISBN-10: 0316036137

  • Chung CJ, Reynolds RG (1996) A testbed for solving optimization problems using cultural algorithms. In: Evolutionary programming, pp 225–236

  • Coello Coello CA (2002) Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Comput Methods Appl Mech Eng 191:1245–1287

    Google Scholar 

  • Coello Coello AC, Becerra RL (2002) Constrained optimization using an evolutionary programming-based cultural algorithm. In: Adaptive computing in design and manufacture V. Springer, London, pp 317–328

  • Coello Coello CA, Landa Becerra R (2003) Evolutionary multiobjective optimization using a cultural algorithm. In: Swarm Intelligence Symposium, 2003. SIS-03. Proceedings of the 2003 IEEE

  • Cruz Cortés N (2004) Sistema inmune artificial para solucionar problemas de optimización. Ph.D. thesis, CINVESTAV. Instituto Politecnico Nacional

  • da Silva E, Barbosa H, Lemonge A (2011) An adaptive constraint handling technique for differential evolution with dynamic use of variants in engineering optimization. Optim Eng 12:31–54. doi:10.1007/s11081-010-9114-2

    Google Scholar 

  • Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern 26:29–41

    Article  Google Scholar 

  • Geertz C (1989). A Interpretação das Culturas. Rio de Janeiro: Ed. Guanabara, p 213

  • Gessler N (2003) Evolving cultural things-that-think. In: Computational synthesis: from basic building blocks to high level functionality. Papers from the 2003 AAAI spring symposium, Technical Report SS-03-02. Menlo Park, AAAI Press, San Francisco, pp 75–81

  • Gershenson C (2010) Computing networks: a general framework to contrast neurl and swarm cognitions. Paladyn J Behav Robot 1(2):147–153

    Article  Google Scholar 

  • Hu X, Eberhart R (2002) Solving constrained nonlinear optimization problems with particle swarm optimization. In: 6th World multiconference on systemics, cybernetics and informatics (SCI 2002), pp 203–206

  • Jin X, Reynolds RG (1999) Using knowledge-based evolutionary computation to solve nonlinear constraint optimization problems: a cultural algorithm approach. In: Proceedings of the 1999 congress on evolutionary computation, 1999. CEC 99, Washington, DC, USA

  • Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: International conference neuronal networks, pp 1942–1948

  • Koziel S, Michalewicz Z (1999) Evolutionary algorithms, homomorphous mappings, and constrained parameter optimization. Evol Comput 7(1):19–44

    Google Scholar 

  • Landa Becerra R, Coello Coello CA (2005) Optimization with constraints using a cultured differential evolution approach. In: Proceedings of the GECCO conference

  • Lederach JP (1995) Preparing for peace: conflict transformation across cultures. Syracuse University Press, Syracuse

  • Lemonge ACC, Barbosa HJC (2004) An adaptive penalty scheme for genetic algorithms in structural optimization. Int J Numer Methods Eng 59(5):703–736

    Google Scholar 

  • Mezura Montes E, Coello Coello CA (2003) A simple multimembered evolution strategy to solve constrained optimization problems. IEEE Trans Evol Comput 9:1–17

    Google Scholar 

  • Michalewicz Z (1995) Genetic algorithms, numerical optimization, and constraints. In: Proceedings of the 6th international conference on genetic algorithms, pp 151–158

  • Michalewicz Z, Deb K, Schmidtz M, Stidsenx T (2000) Test-case generator for nonlinear continuous parameter optimization techniques. IEEE Trans Evol Comput 2000(4):197–215

    Article  Google Scholar 

  • Michalewicz Z, Fogel DB (1998) How to solve it: modern heuristics. Springer, Berlin

  • Michalewicz Z and Fogel DB (1998) How to solve it: modern heuristics. 2nd edn. Springer, Berlin, p 580. ISBN-10: 3540224947

  • Michalewicz Z, Janikow CZ (1996) Genocop: a genetic algorithm for numerical optimization problems with linear constraints. In: Communications of the ACM—electronic supplement to the December 39: article no. 175

  • Mora-Gutiérrez R, Ramírez-Rodríguez J, Rincón-García E (2012a) An optimization algorithm inspired by musical composition. Artif Intell Rev 1:15. doi:10.1007/s10462-011-9309-8

  • Mora-Gutiérrez R, Ramírez-Rodríguez J, Rincón-García EA, Ponsich A, Herrera O (2012b) An optimization algorithm inspired by social creativity systems. Computing 887–914. doi:10.1007/s00607-012-0205-0

  • Mora-Gutiérrez R (2013) Diseño y desarrollo de un método heurístico basado en un sistema socio-cultural de creatividad para la resolucin de problemas de optimización continuos no lineales y diseño de zonas electorales. Ph.D. Thesis. UNAM

  • Rasskin-Gutman D (2005) Modularity: jumping forms inside morphospace. In: Callebaut W, Rasskin-Gutman D (eds) Modularity: understanding the development and evolution of complex natural systems. MIT Press. pp 207–222

  • Ray T, Liew KM (2003) Society and civilitation: an optimization algorithm based on the simulation of social behavior. IEEE Trans Evol Comput 7:386–396

    Article  Google Scholar 

  • Ray T, Kang T, Chye SK (2000) An evolutionary algorithm for constrained optimization. In: GECCO’00, pp 771–777

  • Reynolds RG (1994) An introduction to cultural algorithms. In: Proceedings of the 3rd annual conference on evolutionary programming. World Scientific Publishing, Singapore, pp 131–139

  • Reynolds RG, Peng B, Whallon R (2005) Emergent social structures in cultural algorithms. In: Proceedings of NAACSOS, Notre Dame, Indiana, USA

  • Reynolds R, Michalewicz Z, Cavaretta M (1995) Using cultural algorithms for constraint handling in GENOCOP. In: Evolutionary programming, vol. 4, pp 298–305. Complex adaptive systems. MIT Press, Cambridge

  • Simon HA (1996) The sciences of the artificial, 3rd edn. MIT Press, Cambridge

  • Schlosser G, Wagner GP (2004) Modularity in development and evolution. 1st edn. University of Chicago Press, p 600. ISBN-10: 0226738558

  • Tang W, Li Y (2008) Constrained optimization using triple spaces cultured genetic algorithm. In: International conference on natural computation, vol 6. pp 589–593

  • Wolpert DH, Macready WG (1995) No free lunch theorems for search. Technical Report SFI-WP-95-02-010, Santa Fe Institute

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Anselmo Mora-Gutiérrez.

Additional information

Communicated by D. Liu.

Appendix: G-suite test functions

Appendix: G-suite test functions

$$\begin{aligned} \begin{array}{l} \quad \mathbf {G1} \\ \min f(x)=5x_{1}+5_{2}+5x_{3}+5x_{4}-5 \sum _{l=1}^{4} x_{l}^{2}\\ -\sum _{l=5}^{13}x_{l}.\\ \hbox {subject to}\\ 2x_{1}+2x_{2}+x_{10}+x_{11}\le 10\\ -8x_{1}+x_{10}\le 0\nonumber \\ \end{array}\\ \begin{array}{l} -2x_{4}-x_{5}+x_{10}\le 0\\ 2x_{1}+2x_{3}+x_{10}+x_{12} \le 10\\ -8x_{2}+x_{11}\le 0\\ -2x_{6}-x_{7}+x_{11}\le 0\\ 2x_{2}+2x_{3}+x_{11}+x_{11}\le 10\\ -8x_{3}+x_{11}\le 0\\ -2x_{8}-x_{9}+x_{12}\le 0\\ 0\le x_{l} \le 1 \quad \forall l=1,\ldots ,9\\ 0\le x_{l} \le 100 \quad \forall l=10,\ldots ,12\\ 0\le x_{13} \le 1\\ \hbox {where: } f(x^{\star })=-15\\ \hbox {with } x^{\star }=[1,1,1,1,1,1,1,1,1,3,3,3,1]\\ \end{array} \end{aligned}$$
(14)
$$\begin{aligned} \begin{array}{l} \quad \mathbf {G2}\\ \max f(x)=\left| \frac{\sum _{l=1}^{n} \cos ^{4}(x_{l})-2\prod _{l=1}^{n}\cos ^{2}(x_{l})}{\sqrt{\sum _{l=1}^{n} l*\cos ^{2}(x_{l})}} \right| \\ \hbox {subject to}\\ \prod _{l=1}^{n}x_{l}\ge 0.75\\ \prod _{l=1}^{n}x_{l}\le 0.75n\\ 0\le x_{l} \le 10 \quad \forall l=1,\ldots ,n\\ \hbox {If }n=20 \hbox { then } f(x^{\star })=0.8036 \\ \hbox {If }n=50 \hbox { then } f(x^{\star })=0.83 \\ \end{array} \end{aligned}$$
(15)
$$\begin{aligned} \begin{array}{l} \quad \mathbf {G3}\\ \max f(x)=(\sqrt{n})^{n}*\prod _{l=1}^{n}x_{l} \\ \hbox {subject to}\\ \sum _{l=1}^{n} x_{l}^{2}=1 0\le x_{l} \le 1\quad \forall l=1,\ldots ,n\\ \hbox {where: } f(x^{\star })=1 \hbox { with } x^{\star }=\left[ \frac{1}{\sqrt{n}}, \frac{1}{\sqrt{n}}, \ldots , \frac{1}{\sqrt{n}}\right] \\ \end{array} \end{aligned}$$
(16)
$$\begin{aligned}&\begin{array}{l} \quad \mathbf {G4}\\ \min f(x)=5.3578547x_{3}^{2}+0.8356891x_{1}x_{5} \\ + 37.293239x_{1}-40792.141\\ \hbox {subject to}\\ 85.334407+0.0056858x_{2}x_{5}+0.0006262x_{l}x_{4}\\ -0.0022053x_{3}x_{5}\ge 0\\ 85.334407+0.0056858x_{2}x_{5}+0.0006262x_{l}x_{4}\\ -0.0022053x_{3}x_{5}\le 92\\ 80.51249 + 0.0071317x_{2}x_{5} + 0.0029955x_{l}x_{2}\\ +0.0021813x_{3}^{2}\ge 90\\ 80.51249 + 0.0071317x_{2}x_{5} + 0.0029955x_{l}x_{2}\\ +0.0021813x_{3}^{2}\le 110\\ 9.300961 + 0.0047026x_{3}x_{5} + 0.00l2547x_{l}x_{3} \\ +0.0019085x_{3}x_{4}\ge 20\nonumber \\ \end{array}\\&\begin{array}{l} 9.300961 + 0.0047026x_{3}x_{5} + 0.00l2547x_{l}x_{3} \\ +0.0019085x_{3}x_{4}\le 25\\ 78\le x_{1} \le 102\\ 33\le x_{2} \le 45\\ 27\le x_{l} \le 45 \quad \forall l=3,4,5\\ \hbox {where: } f(x^{\star })=-30,665.5 \\ \hbox { with } x^{\star }=[78, 33, 29.995, 45, 36.776 ]\\ \end{array} \end{aligned}$$
(17)
$$\begin{aligned}&\begin{array}{l} \quad \mathbf {G5}\\ \min f(x)=3x_{1}+0.000001x_{1}^{2}+2x_{2}+ \frac{0.000002}{3x_{2}^{3}}\\ \hbox {subject to}\\ x_{4}-x_{3}+0.55\ge 0\\ x_{3}-x_{4}+0.55\ge 0\\ 1{,}000 \sin (-x_{3}-0.25)+1,000\sin (-x_{4}-0.25)+894.8\\ -x_{1}=0\nonumber \\ \end{array} \\&\begin{array}{l} 1000 \sin (x_{3}-0.25)+ 1{,}000\sin (x_{3}-x_{4}-0.25)+ 894.8\\ \!-x_{2} \!=\! 0\\ 1{,}000 \sin (x_{4}-0.25)+ 1{,}000\sin (x_{4}-x_{3}-0.25)\\ +1{,}294. 8 = 0\\ 0\le x_{l} \le 1,200 \quad \forall l=1,2\\ -0.55\le x_{i} \le 0.55 \quad \forall l=3,4\\ \hbox {where: } f(x^{\star })=5{,}126.4981\\ \hbox {with } x^{\star }\!=\![679.9453,1{{,}}026.067,0.1188764,-0.3962336]\\ \end{array} \end{aligned}$$
(18)
$$\begin{aligned} \begin{array}{l} \quad \mathbf {G6}\\ \min f(x)=(x_{1}-10)^{3}+(x_{2}-20)^{3}\\ \hbox {subject to}\\ (x_{1}-5)^{2}+(x_{2}-5)^{2}-100\ge 0\\ -(x_{1}-6)^{2}-(x_{2}-5)^{2}+82.81\ge 0\\ 13\le x_{1} \le 100\\ 0\le x_{2} \le 100 \\ \hbox {where: } f(x^{\star })=-6961 .81381\\ \hbox {with } x^{\star }=[14.095, 0.84296]\\ \end{array} \end{aligned}$$
(19)
$$\begin{aligned} \begin{array}{l} \quad \mathbf {G7}\\ \min f(x)=x_{1}^{2}+x_{2}^{2}+x_{1}x_{2}-14x-{1}-16x_{2}\\ +(x_{3}-10)^{2} +4(x{4}-5)^{2} +(x_{5}-3)^{2}+2(x_{6}-1)^{2}\\ +5x_{7}^{2}+7(x_{8}-11)^{2} +2(x_{9}-10)^{2} + (x_{10}-7)^{2}+45\\ \hbox {subject to}\\ 105-4x_{1}-5x_{2}+3x_{7}-9x_{8}\ge 0\\ -3(x_{1}-2)^{2}-4(x_{2}-3)^{2}-2x_{3}^{2}+7x_{4}+120\ge 0\\ -10x-{1}+8x_{2}+17x_{7}-2x_{8}\ge 0\\ -x_{1}^{2}-2(x_{2}-2)^{2}+2x_{1}x_{2}-14x_{5} +6x_{6}\ge 0\\ 8x_{1}-2x_{2}-5x_{9}+2x_{10}+12\ge 0\\ -5x_{1}^{2}-8x_{2}-(x_{3}-6)^{2}+2x_{4}+40\ge 0\\ 3x_{1}-6x_{2}-12(x_{9}-8)^{2}+7x_{10} \ge 0\\ -0.5(x_{1}-8)^{2}-2(x_{2}-4)^{2}-3x_{5}^{2} + x_{6} +30 \ge 0\\ -10\le x_{l} \le 10 \hbox { }\forall l=1,\ldots ,10\\ \hbox {where: } f(x^{\star })=24.3062091 \\ \hbox {with } x^{\star }=[2.171996,2.363683,8.773926,5.095984,\\ 0.99065048,1.430574,1.321644,9.828726,8.280092,\\ 8.375927]\\ \end{array} \end{aligned}$$
(20)
$$\begin{aligned} \begin{array}{l} \quad \mathbf {G8}\\ \max f(x)=\frac{\sin ^{3}(2\pi x_{1})*\sin (2\pi x_{2})}{x_{1}^{3}*(x_{1}+x_{2})}\\ \hbox {subject to}\\ x_{1}^{2}-x_{2}+1\le 0\\ 1-x_{1}-(x_{2}-4)^2\le 0\\ 0\le x_{l} \le 10 \quad \forall l=1,2\\ \hbox {where: } f(x^{\star })=0.1 \\ \end{array} \end{aligned}$$
(21)
$$\begin{aligned}&\begin{array}{l} \quad \mathbf {G9}\nonumber \\ \min f(x)=(x_{1}-10)^{2}+5(x_{2}-12)^2+x_{3}^{4}+3(x_{4}-11)^{2}\nonumber \\ +10x_{5}^{6}+7x_{7}^{4} -4x_{6}x_{7}-10x_{6}-8x_{7}\nonumber \\ \end{array}\\&\begin{array}{l} \hbox {subject to}\\ 127-x_{1}^{2}-3x_{2}^{4}-x_{3}-4x_{4}^{2}-5x_{5}\ge 0\\ 196-23x_{1}-x_{2}^{2}-2x_{6}^{2}+8x_{1}\ge 0\\ 282-7x_{1}-3x_{2}-10x_{3}^{2}-x_{4}+x_{5}\ge 0\\ -4x_{1}^{2}-x_{2}^{2}+3x_{1}x_{2}-5x_{6}+11x_{7}\ge 0\\ -10\le x_{l} \le 10 \quad \forall l=1,\ldots ,7\\ \hbox {where: } f(x^{\star })=680.6300873\\ \hbox {with }x^{\star }=[2.330499,1.951372,-0.4775414\\ 4.365726,-0.6244870,1.038131,1.594227]\\ \end{array} \end{aligned}$$
(22)
$$\begin{aligned} \begin{array}{l} \quad \mathbf {G10}\\ \min f(x)=x_{1}+x_{2}+x_{3}\\ \hbox {subject to}\\ 1-0.0025(x_{4}+x_{6})\ge 0\\ 1-0.01(x_{8}-x_{5})\ge 0\\ x_{2}x_{7}-1{,}250x_{5}-x_{2}x_{7}\ge 0\\ 1-0.0025(x_{5}+x_{7}-x_{4})\ge 0\\ x_{1}x_{6}-833.33252x_{4}-100x_{1}+83,333.333\ge 0\\ x_{3}x_{8}-1{,}250,000-x_{3}x_{5}+2,500x_{5}\ge 0\\ 100\le x_{1} \le 10,000 \\ 1{,}000\le x_{l} \le 10{,}000\quad \forall l=2,3\\ 10\le x_{l} \le 1,000\quad \forall l=4,\ldots ,8\\ \hbox {where: } f(x^{\star })=7{,}049.330923 \\ \hbox {with }x^{\star }=[579.3167,1,359.943,5,110.071,\\ 182.074,295.5985,217.9799,286.4162,395.5979]\\ \end{array} \end{aligned}$$
(23)
$$\begin{aligned} \begin{array}{l} \quad \mathbf {G11}\\ \min f(x)=x_{1}^{2}+(x_{2}-1)^{2}\\ \hbox {subject to}\\ x_{2}-x_{1}^{2}=0\\ -1\le x_{l} \le 1 \quad \forall l=1,2\\ \hbox {where: } f(x^{\star })=0.75000455 \\ \hbox {with }x^{\star }=[\pm 0.70711,0.5]\\ \end{array} \end{aligned}$$
(24)
$$\begin{aligned} \begin{array}{l} \quad \mathbf {G12}\\ \max f(x)=\frac{100-(x_{1}-5)^{2}-(x_{2}-5)^{2}-(x_{3}-5)^{2}}{100}\\ \hbox {subject to}\\ (x_{1}-\rho _{1})^{2}+(x_{2}-\rho _{2})^{2}+(x_{3}-\rho _{3})^{2}\le 0.25\\ \hbox {for: } \rho _{s}=1,3,5,7,9 \forall s=1,2,3\\ 0\le x_{l} \le 10 \forall l=1,2,3\\ \hbox {where: } f(x^{\star })=1 \\ \hbox {with }x^{\star }=[5,5,5]\\ \end{array} \end{aligned}$$
(25)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mora-Gutiérrez, R.A., Ramírez-Rodríguez, J., Rincón-García, E.A. et al. Adaptation of the musical composition method for solving constrained optimization problems. Soft Comput 18, 1931–1948 (2014). https://doi.org/10.1007/s00500-013-1177-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-013-1177-5

Keywords

Navigation