Skip to main content

Advertisement

Log in

Data-driven modeling and optimization of thermal comfort and energy consumption using type-2 fuzzy method

  • Focus
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

In the research domain of intelligent buildings and smart home, modeling and optimization of the thermal comfort and energy consumption are important issues. This paper presents a type-2 fuzzy method based data-driven strategy for the modeling and optimization of thermal comfort words and energy consumption. First, we propose a methodology to convert the interval survey data on thermal comfort words to the interval type-2 fuzzy sets (IT2 FSs) which can reflect the inter-personal and intra-personal uncertainties contained in the intervals. This data-driven strategy includes three steps: survey data collection and pre-processing, ambiguity-preserved conversion of the survey intervals to their representative type-1 fuzzy sets (T1 FSs), IT2 FS modeling. Then, using the IT2 FS models of thermal comfort words as antecedent parts, an evolving type-2 fuzzy model is constructed to reflect the online observed energy consumption data. Finally, a multiobjective optimization model is presented to recommend a reasonable temperature range that can give comfortable feeling while reducing energy consumption. The proposed method can be used to realize comfortable but energy-saving environment in smart home or intelligent buildings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ansari F, Mokhtar A, Abbas K, Adam N (2005) A simple approach for building cooling load estimation. Am J Environ Sci 1(3):209–212

    Article  Google Scholar 

  • Ban AI, Coroianu L (2012) Nearest interval, triangular and trapezoidal approximation of a fuzzy number preserving ambiguity. Int J Approx Reas 53(5):805–836

    Article  MathSciNet  MATH  Google Scholar 

  • Censor Y (1977) Pareto optimality in multiobjective problems. Appl Math Optimiz 4(1):41–59

    Article  MathSciNet  Google Scholar 

  • Chanas S (2001) On the interval approximation of a fuzzy number. Fuzzy Set Syst 122(2):353–356

    Article  MathSciNet  MATH  Google Scholar 

  • Chen Q, Wan J, Fan Y, Wang G (2008) Effects of the indoor temperature change on the air-conditioning energy consumption (in Chinese). Refrig Air Cond 22(3):107–109

    Google Scholar 

  • Cheng J, Zhang G, Li Z, Li Y (2012) Multi-objective ant colony optimization based on decomposition for bi-objective traveling salesman problems. Soft Comput 16(4):597–614

    Article  MATH  Google Scholar 

  • Coupland S, Mendel JM, Wu D (2010) Enhanced interval approach for encoding words into interval type-2 fuzzy sets and convergence of the word fous. In: 2010 IEEE international conference on fuzzy systems (FUZZ 2010), pp 1–8

  • De Angelis F, Boaro M, Fuselli D, Squartini S, Piazza F, Wei Q (2013) Optimal home energy management under dynamic electrical and thermal constraints. IEEE Trans Ind Inform 9(3):1518–1527

    Article  Google Scholar 

  • Deb K (2009) Multi-objective optimization using evolutionary algorithms. Wiley (Wiley-interscience series in systems and optimization), Chichester

    MATH  Google Scholar 

  • Djongyang N, Tchinda R, Njomo D (2010) Thermal comfort: a review paper. Renew Sustain Energy Rev 14(9):2626–2640

    Google Scholar 

  • Fanger PO et al (1970) Thermal comfort: analysis and applications in environmental engineering. Danish Technical Press, Copenhagen

    Google Scholar 

  • Favre B, Peuportier B (2013) Using dynamic programming optimization to maintain comfort in building during summer periods. In: Hakansson A et al. (eds) Sustainability in energy and buildings, SIST 22. Springer, Berlin, pp 137–146

  • Fazel Zarandi M, Gamasaee R (2012) Type-2 fuzzy hybrid expert system for prediction of tardiness in scheduling of steel continuous casting process. Soft Comput 16(8):1287–1302

    Article  Google Scholar 

  • Gu L, Zhang YQ (2007) Web shopping expert using new interval type-2 fuzzy reasoning. Soft Comput 11(8):741–751

    Article  Google Scholar 

  • Juang CF, Chen CY (2013) An interval type-2 neural fuzzy chip with on-chip incremental learning ability for time-varying data sequence prediction and system control. IEEE Trans Neural Netw Learn Syst. doi:10.1109/TNNLS.2013.2253799

  • Li C, Yi J, Wang M, Zhang G (2012a) Monotonic type-2 fuzzy neural network and its application to thermal comfort prediction. Neural Comput Appl. doi:10.1007/s00521-012-1140-x

    Google Scholar 

  • Li C, Yi J, Wang M, Zhang G (2012b) Uncertainty degree of interval type-2 fuzzy sets and its application to thermal comfort modelling. In: IEEE 9th international conference on fuzzy systems and knowledge discovery (FSKD 2012), pp 206–210

  • Li C, Wang M, Zhang G (2013a) Prediction of thermal comfort using sirms connected type-2 fuzzy reasoning method. ICIC Express Lett 7(4):1401–1406

    MathSciNet  Google Scholar 

  • Li C, Zhang G, Yi J, Wang M (2013b) Uncertainty degree and modeling of interval type-2 fuzzy sets: definition, method and application. Comput Math Appl. doi:10.1016/j.camwa.2013.07.021

  • Li Q, Meng Q, Cai J, Yoshino H, Mochida A (2009) Applying support vector machine to predict hourly cooling load in the building. Appl Energy 86(10):2249–2256

    Google Scholar 

  • Liu F, Mendel JM (2008) Encoding words into interval type-2 fuzzy sets using an interval approach. IEEE Trans Fuzzy Syst 16(6):1503–1521

    Article  Google Scholar 

  • Liu Y, Pender G (2013) Automatic calibration of a rapid flood spreading model using multiobjective optimisations. Soft Comput 17(4):713–724

    Article  Google Scholar 

  • Ljung L (1999) System identification: theory for the user. PTR Prentice Hall, Upper Saddle River

    Google Scholar 

  • Malatji EM, Zhang J, Xia X (2013) A multiple objective optimisation model for building energy efficiency investment decision. Energy Build 61:81–87

    Article  Google Scholar 

  • Mendel JM (2001) Uncertain rule-based fuzzy logic system: introduction and new directions. Prentice-Hall, Upper Saddle River

  • Mendel JM (2007) Computing with words and its relationships with fuzzistics. Inf Sci 177(4):988–1006

    Article  MathSciNet  Google Scholar 

  • Mendel JM (2012) On KM algorithms for solving type-2 fuzzy set problems. IEEE Trans Fuzzy Syst 21(3):426–446

    Article  MathSciNet  Google Scholar 

  • Mendel JM, Liu X (2013) Simplified interval type-2 fuzzy logic systems. IEEE Trans on Fuzzy Syst. doi:10.1109/TFUZZ.2013.2241771

  • Mendel JM, Wu H (2006) Type-2 fuzzistics for symmetric interval type-2 fuzzy sets: Part 1, forward problems. IEEE Trans Fuzzy Syst 14(6):781–792

    Article  Google Scholar 

  • Mendel JM, Wu H (2007a) Type-2 fuzzistics for nonsymmetric interval type-2 fuzzy sets: forward problems. IEEE Trans Fuzzy Syst 15(5):916–930

    Article  Google Scholar 

  • Mendel JM, Wu H (2007b) Type-2 fuzzistics for symmetric interval type-2 fuzzy sets: Part 2, inverse problems. IEEE Trans Fuzzy Syst 15(2):301–308

    Article  MathSciNet  Google Scholar 

  • Mendel JM, John RI, Liu F (2006) Interval type-2 fuzzy logic systems made simple. IEEE Trans Fuzzy Syst 14(6):808–821

    Article  Google Scholar 

  • Nie M, Tan WW (2008) Towards an efficient type-reduction method for interval type-2 fuzzy logic systems. In: 2008 IEEE international conference on fuzzy systems (FUZZ-IEEE 2008), pp 1425–1432

  • Nie M, Tan WW (2012) Analytical structure and characteristics of symmetric Karnik-Mendel type-reduced interval type-2 fuzzy pi and pd controllers. IEEE Trans Fuzzy Syst 20(3):416–430

    Article  Google Scholar 

  • Selamat H, Rahman AF, Ismail FS (2013) Power consumption modeling for indoor environment using artificial neural network. Appl Mech Mater 315:221–225

    Article  Google Scholar 

  • Squartini S, Boaro M, De Angelis F, Fuselli D, Piazza F (2013) Optimization algorithms for home energy resource scheduling in presence of data uncertainty. In: IEEE 2013 fourth international conference on intelligent control and information processing, pp 323–328

  • Stephen EA, Shnathi M, Rajalakshmy V, Parthido MM (2010) Application of fuzzy logic in control of thermal comfort. Int J Comput Appl Math 5(3):289–300

    Google Scholar 

  • Takáč Z (2013) Inclusion and subsethood measure for interval-valued fuzzy sets and for continuous type-2 fuzzy sets. Fuzzy Sets Syst 224:106–120

    Article  Google Scholar 

  • Wu D (2012) On the fundamental differences between interval type-2 and type-1 fuzzy logic controllers. IEEE Trans Fuzzy Syst 20(5):832–848

    Article  Google Scholar 

  • Wu D, Mendel JM, Coupland S (2012) Enhanced interval approach for encoding words into interval type-2 fuzzy sets and its convergence analysis. IEEE Trans Fuzzy Syst 20(3):499–513

    Article  Google Scholar 

  • Yang F, Guan S (2013) Stabilization of interval type-2 t-s fuzzy control systems with time-varying delay by reciprocally convex approach. In: IEEE 2013 Chinese control conference, pp 3397–3401

  • Yang F, Zhang H (2011) T-s model-based relaxed reliable stabilization of networked control systems with time-varying delays under variable sampling. Int J Fuzzy Syst 13(4):260–269

    MathSciNet  Google Scholar 

  • Yang F, Zhang H, Hui G, Wang S (2012) Mode-independent fuzzy fault-tolerant variable sampling stabilization of nonlinear networked systems with both time-varying and random delays. Fuzzy Sets Syst 207:45–63

    Article  MathSciNet  MATH  Google Scholar 

  • Yokoyama R, Wakui T, Satake R (2009) Prediction of energy demands using neural network with model identification by global optimization. Energy Convers Manage 50(2):319–327

    Article  Google Scholar 

  • Yun J, Won KH (2012) Building environment analysis based on temperature and humidity for smart energy systems. Sensors 12(10):13458–13470

    Article  Google Scholar 

  • Zhang H, Quan Y (2001) Modeling, identification, and control of a class of nonlinear systems. IEEE Trans Fuzzy Syst 9(2):349–354

    Article  Google Scholar 

  • Zhou Q, Wang S, Xu X, Xiao F (2008) A grey-box model of next-day building thermal load prediction for energy-efficient control. Int J Energy Res 32(15):1418–1431

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China (61105077, 61074149, 61273149, and 61273326), and the Excellent Young and Middle-Aged Scientist Award Grant of Shandong Province of China (BS2012DX026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengdong Li.

Additional information

Communicated by C. Alippi, D. Zhao and D. Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, C., Zhang, G., Wang, M. et al. Data-driven modeling and optimization of thermal comfort and energy consumption using type-2 fuzzy method. Soft Comput 17, 2075–2088 (2013). https://doi.org/10.1007/s00500-013-1117-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-013-1117-4

Keywords

Navigation