Skip to main content
Log in

An adaptive heuristic to the bounded-diameter minimum spanning tree problem

  • Original Paper
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Given a graph G and a bound d ≥ 2, the bounded-diameter minimum spanning tree problem seeks a spanning tree on G of minimum weight subject to the constraint that its diameter does not exceed d. This problem is NP-hard; several heuristics have been proposed to find near-optimal solutions to it in reasonable times. A decentralized learning automata-based algorithm creates spanning trees that honor the diameter constraint. The algorithm rewards a tree if it has the smallest weight found so far and penalizes it otherwise. As the algorithm proceeds, the choice probability of the tree converges to one; and the algorithm halts when this probability exceeds a predefined value. Experiments confirm the superiority of the algorithm over other heuristics in terms of both speed and solution quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdalla A, Deo N, Gupta P (2000) Random-tree diameter and the diameter-constrained MST. Congressus Numerantium 144:161–182

    MathSciNet  MATH  Google Scholar 

  • Achuthan NR, Caccetta L, Caccetta P, Geelen A (1994) Computational methods for the diameter restricted minimum-weight spanning tree problem. Aust J Comb 10:51–71

    MathSciNet  MATH  Google Scholar 

  • Aggarwal V, Aneja Y, Nair K (1982) Minimal spanning tree subject to a side constraint. Comput Oper Res 9:287–296

    Article  Google Scholar 

  • Akbari Torkestani J (2012a) Degree constrained minimum spanning tree problem in stochastic graph. J Cybern Syst 43(1):1–21

    Google Scholar 

  • Akbari Torkestani J (2012b) An adaptive backbone formation algorithm for wireless sensor networks. Comput Commun (in press)

  • Akbari Torkestani J (2012c) A new approach to the job scheduling problem in computational grids. Clust Comput (in press)

  • Akbari Torkestani J (2012d) LAAP: a learning automata-based adaptive polling scheme for clustered wireless ad-hoc networks. Wirel Pers Commun (in press)

  • Akbari Torkestani J (2012e) Mobility prediction in mobile wireless Networks. J Netw Comput Appl (in press)

  • Akbari Torkestani J (2012f) An adaptive learning automata-based ranking function discovery algorithm. J Intel Inf Syst (in press)

  • Akbari Torkestani J (2012g) A stable virtual backbone for wireless MANETS. Telecommun Syst J (in press)

  • Akbari Torkestani J (2012h) An adaptive focused web crawling algorithm based on learning automata. Appl Intel (in press)

  • Akbari Torkestani J, Meybodi MR (2011a) LLACA: an adaptive localized clustering algorithm for wireless ad hoc networks based on learning automata. J Comput Electr Eng 37:461–474

    Google Scholar 

  • Akbari Torkestani J, Meybodi MR (2011b) A link stability-based multicast routing protocol for wireless mobile ad hoc networks. J Netw Comput Appl 34(4):1429–1440

    Google Scholar 

  • Akbari Torkestani J, Meybodi MR (2012) Finding minimum weight connected dominating set in stochastic graph based on learning automata. Inf Sci 200:57–77

    Google Scholar 

  • Ballardie A, Francis P, Crowcroft J (1993) Core-based trees (CBT)—an architecture for scalable inter-domain multicast routing. Comput Commun Rev 23(4):85–95

    Article  Google Scholar 

  • Beasley EJ (1990) OR-Library: distributing test problems by electronic mail. J Oper Res Soc 41(11):1069–1072

    Google Scholar 

  • Beasley EJ (2005) OR-Library: capacitated MST. http://people.brunel.ac.uk/~mastjjb/jeb/orlib/capmstinfo.html

  • Binh H, Nghia N (2009) New multiparent recombination in genetic algorithm for solving bounded-diameter minimum spanning tree problem. In: Proceedings of 1st Asian Conference on intelligent information and database systems, pp 283–288

  • Binh H, Hoai N, McKay RI (2008) A new hybrid genetic algorithm for solving the bounded-diameter minimum spanning tree problem. In: Proceedings of IEEE World Congress on computational intelligence (CEC’2008), pp 3127–3133

  • Bookstein A, Klein ST (2001) Compression of correlated bitvectors. Inf Syst 16:110–118

    Google Scholar 

  • Bui TN, Zrncic CM (2006) An ant-based algorithm for finding degree-constrained minimum spanning tree. In: Proceedings of the 8th annual conference on genetic and evolutionary computation, pp 11–18

  • Feo TA, Resende MGC (1989) A probabilistic heuristic for a computationally difficult set covering problem. Oper Res Lett 8:67–71

    Article  MathSciNet  MATH  Google Scholar 

  • Gouveia L, Magnanti TL (2003) Network flow models for designing diameter-constrained minimum-spanning and steiner trees. Networks 41(3):159–173

    Article  MathSciNet  MATH  Google Scholar 

  • Gouveia L, Magnanti TL, Requejo C (2004) A 2-path approach for odd-diameter-constrained minimum spanning and Steiner trees. Networks 44:254–265

    Article  MathSciNet  MATH  Google Scholar 

  • Gouveia L, Simonetti L, Uchoa E (2011) Modeling hop-constrained and diameter-constrained minimum spanning tree problems as Steiner tree problems over layered graphs. J Math Program 128(1–2):123–148

    Article  MathSciNet  MATH  Google Scholar 

  • Gruber M, Raidl GR (2005) Variable neighborhood search for the bounded-diameter minimum spanning tree problem. In: Proceedings of the 18th Mini Euro Conference on variable neighborhood search. Tenerife, Spain

  • Gruber M and Raidl GR (2005) A New 0-1 ILP approach for the bounded-diameter minimum spanning tree problem. In: Proceedings of the 2nd International Network Optimization Conference

  • Gruber M, Raidl GR (2009) Exploiting hierarchical clustering for finding bounded-diameter minimum spanning trees on Euclidean instances. In: Proceedings of the 11th Annual Conference on genetic and evolutionary computation (GECCO). Canada, pp 263–270

  • Gruber M, Hemert J, Raidl GR (2006) Neighborhood searches for the bounded-diameter minimum spanning tree problem embedded in a VNS, EA and ACO. In: Proceedings of Genetic and Evolutionary Computational Conference (GECCO’2006)

  • Hanr L, Wang Y (2006) A novel genetic algorithm for degree-constrained minimum spanning tree problem. Int J Comput Sci Netw Secur 6(7A):50s–57s

    Google Scholar 

  • Julstrom BA (2004) Encoding bounded-diameter minimum spanning trees with permutations and random keys. In: Proceedings of Genetic and Evolutionary Computational Conference (GECCO’2004)

  • Julstrom BA (2004) Encoding bounded-diameter minimum spanning trees with permutations and with random keys. In: Proceedings of the Genetic and Evolutionary Computation Conference (Lecture Note on Computer Science), vol 3102, pp 1282–1281

  • Julstrom BA, Raidl GR (2003) A permutation-coded evolutionary algorithm for the bounded-diameter minimum spanning tree problem. In: Genetic and Evolutionary Computation Conferences Workshops Proceedings, Workshop on analysis and design of representations, pp 2–7

  • Karp RM (1972) Reducibility among combinatorial problems, complexity of computer computations. Plenum Press, USA, pp 85–103

    Google Scholar 

  • Krishnamoorthy M, Ernst A (2001) Comparison of algorithms for the degree constrained minimum spanning tree. J Heuristics 7:587–611

    Article  MATH  Google Scholar 

  • Kruskal JB (1956) On the shortest spanning sub tree of a graph and the traveling salesman problem. In: Proceedings of American Mathematical Society, pp 748–750

  • Lourenço HR, Martin OC, Stutzle T (2002) Iterated local search. Handbook of Metaheuristics, Kluwer, pp 321–353

    Google Scholar 

  • Lucena A, Ribeiro CC, Santos AC (2010) A hybrid heuristic for the diameter-constrained minimum spanning tree problem. J Global Optim 46:363–381

    Article  MathSciNet  MATH  Google Scholar 

  • Narendra KS, Thathachar MAL (1989) Learning automata: an introduction. Prentice-Hall, New York

    Google Scholar 

  • Oencan T, Cordeau JF, Laporte G (2008) A tabu search heuristic for the generalized minimum spanning tree problem. Eur J Oper Res 191(2):306–319

    Article  MATH  Google Scholar 

  • Oncan T (2007) Design of capacitated minimum spanning tree with uncertain cost and demand parameters. Inf Sci 177:4354–4367

    Article  MathSciNet  Google Scholar 

  • Parsa M, Zhu Q, Garcia-Luna-Aceves JJ (1998) An iterative algorithm for delay-constrained minimum-cost multicasting. IEEE/ACM Trans Networking 6(4):461–474

    Article  Google Scholar 

  • Prim RC (1957) Shortest connection networks and some generalizations. Bell Syst Tech J 36:1389–1401

    Google Scholar 

  • Raidl GR, Julstrom BA (2003) Greedy heuristics and an evolutionary algorithm for the bounded-diameter minimum spanning tree problem. In: Proceedings of the 2003 ACM Symposium on APPLIED Computing, pp 747–752

  • Raidl GR, Julstrom BA (2003b) Edge sets: an effective evolutionary coding of spanning trees. IEEE Trans Evol Comput 7(3):225–239

    Article  Google Scholar 

  • Raymond K (1989) A tree-based algorithm for distributed mutual exclusion. ACM Trans Comput Syst 7(1):61–77

    Article  MathSciNet  Google Scholar 

  • Requejo C, Santos E (2009) Greedy heuristics for the diameter-constrained minimum spanning tree problem. J Math Sci 161(6):930–943

    Article  MathSciNet  MATH  Google Scholar 

  • Salama HF, Reeves DS, Viniotis Y (1997) The delay-constrained minimum spanning tree problem. In Proceedings of the Second IEEE Symposium on computers and communications, pp 699–703

  • Santos AC, Lucena A, Ribeiro CC (2004) Solving diameter-constrained minimum spanning tree problem in dense graphs. Lect Notes Comput Sci 3059:458–467

    Article  Google Scholar 

  • Sharaiha YM, Gendreau M, Laporte G, Osman IH (1998) A tabu search algorithm for the capacitated shortest spanning tree problem. Networks 29(3):161–171

    Article  MathSciNet  Google Scholar 

  • Singh A, Gupta AK (2007) Improved heuristics for the bounded-diameter minimum spanning tree problem. Soft Comput 11(10):911–921

    Article  Google Scholar 

  • Soak SM, Jeon M (2010) The property analysis of evolutionary algorithms applied to spanning tree problems. Appl Intell 32(1):96–121

    Article  Google Scholar 

  • Thathachar MAL, Harita BR (1987) Learning automata with changing number of actions. IEEE Trans Syst Man Cybern SMG17:1095–1100

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Akbari Torkestani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akbari Torkestani, J. An adaptive heuristic to the bounded-diameter minimum spanning tree problem. Soft Comput 16, 1977–1988 (2012). https://doi.org/10.1007/s00500-012-0869-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-012-0869-6

Keywords

Navigation