Skip to main content
Log in

Numerical solution of fully fuzzy linear systems by fuzzy neural network

  • Original Paper
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

In this paper, a new hybrid method based on fuzzy neural network (FNN) for approximate solution of fuzzy linear systems of the form \(Ax=d,\) where \(A\) is a square matrix of fuzzy coefficients, \(x\) and \(d\) are fuzzy number vectors, is presented. Here a neural network is considered as a part of a large field called neural computing or soft computing. Moreover, in order to find the approximate solution of an \(n\times n\) system of fuzzy linear equations that supposedly has a unique fuzzy solution, a simple algorithm from the cost function of the FNN is proposed. Finally, we illustrate our approach by some numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbasbandy S, Alavi M (2005) A method for solving fuzzy linear systems. Iran J Fuzzy Syst 2:37–43

    MATH  MathSciNet  Google Scholar 

  • Abbasbandy S, Otadi M (2006) Numerical solution of fuzzy polynomials by fuzzy neural network. Appl Math Comput 181:1084–1089

    Article  MATH  MathSciNet  Google Scholar 

  • Abbasbandy S, Jafarian A, Ezzati R (2005a) Conjugate gradient method for fuzzy symmetric positive definite system of linear equations. Appl Math Comput 171:1184–1191

    Article  MATH  MathSciNet  Google Scholar 

  • Abbasbandy S, Nieto JJ, Alavi M (2005b) Tuning of reachable set in one dimensional fuzzy differential inclusions. Chaos Solitons Fractals 26:1337–1341

    Article  MATH  MathSciNet  Google Scholar 

  • Abbasbandy S, Ezzati R, Jafarian A (2006) LU decomposition method for solving fuzzy system of linear equations. Appl Math Comput 172:633–643

    Article  MATH  MathSciNet  Google Scholar 

  • Abbasbandy S, Otadi M, Mosleh M (2008a) Minimal solution of general dual fuzzy linear systems. Chaos Solitons Fractals 178:1113–1124

    Article  MathSciNet  Google Scholar 

  • Abbasbandy S, Otadi M, Mosleh M (2008b) Numerical solution of a system of fuzzy polynomials by fuzzy neural network. Inf Sci 178:1948–1960

    Article  MATH  Google Scholar 

  • Alefeld G, Herzberger J (1983) Introduction to interval computations. Academic Press, New York

    MATH  Google Scholar 

  • Asady B, Abbasbandy S, Alavi M (2005) Fuzzy general linear systems. Appl Math Comput 169:34–40

    Article  MATH  MathSciNet  Google Scholar 

  • Buckley JJ, Eslami E (1997) Neural net solutions to fuzzy problems: the quadratic equation. Fuzzy Sets Syst 86:289–298

    Article  MATH  MathSciNet  Google Scholar 

  • Caldas M, Jafari S (2005) θ-Compact fuzzy topological spaces. Chaos Solitons Fractals 25:229–232

    Google Scholar 

  • Dehghan M, Hashemi B, Ghatee M (2007) Solution of the fully fuzzy linear systems using iterative techniques. Chaos Solitons Fractals 34:316–336

    Article  MATH  MathSciNet  Google Scholar 

  • Dubois D, Prade H (1978) Operations on fuzzy numbers. J Syst Sci 9:613–626

    Article  MATH  MathSciNet  Google Scholar 

  • Elnaschie MS (2004a) A review of E-infinity theory and the mass spectrum of high energy particle physics. Chaos Solitons Fractals 19:209–236

    Article  Google Scholar 

  • Elnaschie MS (2004b) The concepts of E infinity: an elementary introduction to the Cantorian-fractal theory of quantum physics. Chaos Solitons Fractals 22:495–511

    Article  Google Scholar 

  • Elnaschie MS (2005) On a fuzzy Kãhler manifold which is consistent with the two slit experiment. Int J Nonlinear Sci Numer Simul 6:95–98

    Article  Google Scholar 

  • Elnaschie MS (2006a) Elementary number theory in superstrings, loop quantum mechanics, twistors and E-infinity high energy physics. Chaos Solitons Fractals 27:297–330

    Article  Google Scholar 

  • Elnaschie MS (2006b) Superstrings, entropy and the elementary particles content of the standard model. Chaos Solitons Fractals 29:48–54

    Article  Google Scholar 

  • Feng G, Chen G (2005) Adaptive control of discrete-time chaotic systems: a fuzzy control approach. Chaos Solitons Fractals 23:459–467

    Article  MATH  MathSciNet  Google Scholar 

  • Feuring TH, Lippe W-M (1995) Fuzzy neural networks are universal approximators. In: IFSA World Congress 1995, vol 2, Sao Paulo, Brazil, pp 659–662

  • Friedman M, Ma M, Kandel A (1998) Fuzzy linear systems. Fuzzy Sets Syst 96:201–209

    Article  MATH  MathSciNet  Google Scholar 

  • Friedman M, Ma M, Kandel A (2000) Duality in fuzzy linear systems. Fuzzy Sets Syst 109:55–58

    Article  MATH  MathSciNet  Google Scholar 

  • Jiang W, Guo-Dong Q, Bin D (2005) H variable universe adaptive fuzzy control for chaotic system. Chaos Solitons Fractals 24:1075–1086

    Article  MATH  MathSciNet  Google Scholar 

  • Hayashi Y, Buckley JJ, Czogala E (1993) Fuzzy neural network with fuzzy signals and weights. Int J Intell Syst 8:527–537

    Article  MATH  Google Scholar 

  • Ishibuchi H, Nii M (2001) Numerical analysis of the learning of fuzzified neural networks from fuzzy if-then rules. Fuzzy Sets Syst 120:281–307

    Article  MATH  MathSciNet  Google Scholar 

  • Ishibuchi H, Kwon K, Tanaka HA (1995) A learning algorithm of fuzzy neural networks with triangular fuzzy weights. Fuzzy Sets Syst 71:277–293

    Article  Google Scholar 

  • Kaleva O (1987) Fuzzy differential equations. Fuzzy Sets Syst 24:301–317

    Article  MATH  MathSciNet  Google Scholar 

  • Kaufmann A, Gupta MM (1985) Introduction fuzzy arithmetic. Van Nostrand Reinhold, New York

    MATH  Google Scholar 

  • Li HX, Li LX, Wang JY (2003) Interpolation functions of feedforward neural networks. Comput Math Appl 46:1861–1874

    Article  MATH  MathSciNet  Google Scholar 

  • Ma M, Friedman M, Kandel A (1999) A new fuzzy arithmetic. Fuzzy Sets Syst 108:83–90

    Article  MATH  MathSciNet  Google Scholar 

  • Muzzioli S, Reynaerts H (2006) Fuzzy linear systems of the form A 1 x + b 1 = A 2 x + b 2. Fuzzy Sets Syst 157:939–951

    Article  MATH  MathSciNet  Google Scholar 

  • Nozari K, Fazlpour B (2007) Some consequences of spacetime fuzziness. Chaos Solitons Fractals 34:224–234

    Article  MATH  MathSciNet  Google Scholar 

  • Park JH (2004) Intuitionistic fuzzy metric spaces. Chaos Solitons Fractals 22:1039–1046

    Article  MATH  MathSciNet  Google Scholar 

  • Rumelhart DE, McClelland JL, the PDP Research Group (1986) Parallel distributed processing, vol 1. MIT Press, Cambridge

  • Tanaka Y, Mizuno Y, Kado T (2005) Chaotic dynamics in the Friedman equation. Chaos Solitons Fractals 24:407–422

    Article  MATH  Google Scholar 

  • Wang X, Zhong Z, Ha M (2001) Iteration algorithms for solving a system of fuzzy linear equations. Fuzzy Sets Syst 119:121–128

    Article  MATH  MathSciNet  Google Scholar 

  • Wang K, Chen G, Wei Y (2009) Perturbation analysis for a class of fuzzy linear systems. J Comput Appl Math 224:54–65

    Article  MATH  MathSciNet  Google Scholar 

  • Zadeh LA (1975) The concept of a linguistic variable and its application to approximate reasoning. Inf Sci 8:199–249

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We would like to offer particular thanks to Dr M. A. Rezvani for the editing of this paper. We would also like to thank the referees for valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Otadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Otadi, M., Mosleh, M. & Abbasbandy, S. Numerical solution of fully fuzzy linear systems by fuzzy neural network. Soft Comput 15, 1513–1522 (2011). https://doi.org/10.1007/s00500-010-0685-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-010-0685-9

Keywords

Navigation