Skip to main content
Log in

HILK++: an interpretability-guided fuzzy modeling methodology for learning readable and comprehensible fuzzy rule-based classifiers

  • Focus
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

This work presents a methodology for building interpretable fuzzy systems for classification problems. We consider interpretability from two points of view: (1) readability of the system description and (2) comprehensibility of the system behavior explanations. The fuzzy modeling methodology named as Highly Interpretable Linguistic Knowledge (HILK) is upgraded. Firstly, a feature selection procedure based on crisp decision trees is carried out. Secondly, several strong fuzzy partitions are automatically generated from experimental data for all the selected inputs. For each input, all partitions are compared and the best one according to data distribution is selected. Thirdly, a set of linguistic rules are defined combining the previously generated linguistic variables. Then, a linguistic simplification procedure guided by a novel interpretability index is applied to get a more compact and general set of rules with a minimum loss of accuracy. Finally, partition tuning based on two efficient search strategies increases the system accuracy while preserving the high interpretability. Results obtained in several benchmark classification problems are encouraging because they show the ability of the new methodology for generating highly interpretable fuzzy rule-based classifiers while yielding accuracy comparable to that achieved by other methods like neural networks and C4.5. The best configuration of HILK will depend on each specific problem under consideration but it is important to remark that HILK is flexible enough (thanks to the combination of several algorithms in each modeling stage) to be easily adaptable to a wide range of problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. http://www.ics.uci.edu/-mlearn/MLSummary.html.

  2. http://www.inra.fr/internet/Departements/MIA/M/fispro/.

  3. http://www.mat.upm.es/projects/advocate/kbct.htm.

  4. http://www.cs.waikato.ac.nz/ml/weka/.

References

  • Abonyi J, Roubos JA, Szeifert F (2003) Data-driven generation of compact, accurate, and linguistically sound fuzzy classifiers based on a decision-tree initialization. Int J Approx Reason 32:1–21

    Article  MATH  Google Scholar 

  • Alcalá R, Alcalá-Fdez J, Gacto MJ, Herrera F (2007) Rule base reduction and genetic tuning of fuzzy systems based on the linguistic 3-tuples representation. Soft Comput 11(5):401–419

    Article  Google Scholar 

  • Alonso JM, Cordón O, Guillaume S, Magdalena L (2007) Highly interpretable linguistic knowledge bases optimization: genetic tuning versus Solis-Wetts. Looking for a good interpretability–accuracy trade-off. In: Annual IEEE international conference on fuzzy systems, London, UK, pp 901–906

  • Alonso JM, Magdalena L, Guillaume S (2008) HILK: a new methodology for designing highly interpretable linguistic knowledge bases using the fuzzy logic formalism. Int J Intell Syst 23(7):761–794

    Article  MATH  Google Scholar 

  • Alonso JM, Magdalena L, González-Rodríguez G (2009) Looking for a good fuzzy system interpretability index: an experimental approach. Int J Approx Reason 51:115–134

    Article  Google Scholar 

  • Antonelli M, Ducange P, Lazzerini B, Marcelloni F (2009) Exploiting a new interpretability index in the multi-objective evolutionary learning of mamdani fuzzy rule-based systems. In: Ninth international conference on intelligent system design and applications, IEEE, Pisa, Italy, pp 115–120

  • Bezdek JC (1981) Pattern recognition with fuzzy objective function algorithms. Plenum Press, New York

    MATH  Google Scholar 

  • Casillas J, Cordón O, Herrera F, Magdalena L (2003a) Accuracy improvements in linguistic fuzzy modeling, vol 129. Studies in fuzziness and soft computing. Springer, Heidelberg

  • Casillas J, Cordón O, Herrera F, Magdalena L (2003b) Interpretability issues in fuzzy modeling, vol 128. Studies in fuzziness and soft computing. Springer, Heidelberg

  • Casillas J, Cordón O, Del Jesús MJ, Herrera F (2005) Genetic tuning of fuzzy rule deep structures preserving interpretability and its interaction with fuzzy rule set reduction. IEEE Trans Fuzzy Syst 13:13–29

    Article  Google Scholar 

  • Castro JL (1995) Fuzzy logic controllers are universal approximators. IEEE Trans Syst Man Cybern 25(4):629–635

    Article  Google Scholar 

  • Chen MY (2002) Establishing interpretable fuzzy models from numeric data. In: 4th world congress on intelligent control and automation IEEE, pp 1857–1861

  • Cordón O, Herrera F (1997) A three-stage evolutionary process for learning descriptive and approximate fuzzy-logic-controller knowledge bases from examples. Int J Approx Reason 17(4):369–407

    Article  MATH  Google Scholar 

  • Cordón O, Herrera F, Hoffmann F, Magdalena L (2001) Genetic fuzzy systems: evolutionary tuning and learning of fuzzy knowledge bases, vol 19. Advances in fuzzy systems—applications and theory. World Scientific Publishing Co. Pvt. Ltd., Singapore

  • Cordón O, Gomide F, Herrera F, Hoffmann F, Magdalena L (2004) Ten years of genetic fuzzy systems: current framework and new trends. Fuzzy Sets Syst 141:5–31

    Article  MATH  Google Scholar 

  • De Oliveira JV (1999) Semantic constraints for membership function optimization. IEEE Trans Syst Man Cybern A Syst Hum 29(1):128–138

    Article  Google Scholar 

  • Gacto MJ, Alcalá R, Herrera F (2010) Integration of an index to preserve the semantic interpretability in the multi-objective evolutionary rule selection and tuning of linguistic fuzzy systems. IEEE Trans Fuzzy Syst. doi:10.1109/TFUZZ.2010.2041008

  • Glorennec PY (1999) Algorithmes d’apprentissage pour systèmes d’inférence floue. Editions Hermès, Paris

    Google Scholar 

  • Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Addison-Wesley, New York

    MATH  Google Scholar 

  • Guillaume S (2001) Designing fuzzy inference systems from data: an interpretability-oriented review. IEEE Trans Fuzzy Syst 9(3):426–443

    Article  MathSciNet  Google Scholar 

  • Guillaume S, Charnomordic B (2004) Generating an interpretable family of fuzzy partitions. IEEE Trans Fuzzy Syst 12(3):324–335

    Article  Google Scholar 

  • Hartigan JA, Wong MA (1979) A k-means clustering algorithm. Appl Stat 28:100–108

    Article  MATH  Google Scholar 

  • Herrera F (2008) Genetic fuzzy systems: taxonomy, current research trends and prospects. Evol Intell 1(1):27–46

    Google Scholar 

  • Hjorth JSU (1994) Computer intensive statistical methods validation, model selection, and bootstrap. Chapman & Hall, London

    MATH  Google Scholar 

  • Hüllermeier E (2005) Fuzzy methods in machine learning and data mining: status and prospects. Fuzzy Sets Syst 156:387–406

    Article  Google Scholar 

  • Ichihashi H, Shirai T, Nagasaka K, Miyoshi T (1996) Neuro-fuzzy ID3: a method of inducing fuzzy decision trees with linear programming for maximizing entropy and an algebraic method for incremental learning. Fuzzy Sets Syst 81:157–167

    Article  MathSciNet  Google Scholar 

  • Ishibuchi H, Nojima Y (2007) Analysis of interpretability-accuracy tradeoff of fuzzy systems by multiobjective fuzzy genetics-based machine learning. Int J Approx Reason 44:4–31

    Article  MathSciNet  MATH  Google Scholar 

  • Karr CL (1991) Genetic algorithms for fuzzy controllers. AI Expert 6(2):26–33

    Google Scholar 

  • Loquin K, Strauss O (2006) Fuzzy histograms and density estimation. Adv Soft Comput 6:45–52

    Article  Google Scholar 

  • Mamdani EH (1977) Application of fuzzy logic to approximate reasoning using linguistic synthesis. IEEE Trans Comput 26(12):1182–1191

    Article  MATH  Google Scholar 

  • Mencar C, Fanelli AM (2008) Interpretability constraints for fuzzy information granulation. Inf Sci 178:4585–4618

    Article  MathSciNet  Google Scholar 

  • Miller GA (1956) The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychol Rev 101(2):343–352

    Article  Google Scholar 

  • Plutowski M, Sakata S, White H (1994) Cross-validation estimates IMSE. In: Cowan JD, Tesauro G, Alspector J (eds.) Advances in neural information processing systems 6. Morgan Kaufman, San Mateo, pp 391–398

    Google Scholar 

  • Quinlan JR (1993) C4.5: programs for machine learning. Morgan Kaufmann Publishers, San Mateo

    Google Scholar 

  • Quinlan JR (1996) Improved use of continuous attributes in C4.5. J Artif Intell Res 4:77–90

    MATH  Google Scholar 

  • Ruspini EH (1969) A new approach to clustering. Inf Control 15(1):22–32

    Article  MATH  Google Scholar 

  • Saaty TL, Ozdemir MS (2003) Why the magic number seven plus or minus two. Math Comput Model 38:233–244

    Article  MathSciNet  MATH  Google Scholar 

  • Solis FJ, Wets RJB (1981) Minimization by random search techniques. Math Oper Res 6:19–30

    Article  MathSciNet  MATH  Google Scholar 

  • Van Broekhoven E, Adriaenssens V, De Baets B (2007) Interpretability-preserving genetic optimization of linguistic terms in fuzzy models for fuzzy ordered classification: an ecological case study. Int J Approx Reason 44:65–90

    Article  MathSciNet  MATH  Google Scholar 

  • Wang LX, Mendel JM (1992) Generating fuzzy rules by learning from examples. IEEE Trans Syst Man Cybern 22(6):1414–1427

    Article  MathSciNet  Google Scholar 

  • Zadeh LA (1975) The concept of a linguistic variable and its application to approximate reasoning. Part I. Inf Sci 8:199–249

    Google Scholar 

Download references

Acknowledgments

This work has been funded by the Foundation for the Advancement of Soft Computing located at Mieres (Asturias, Spain) and the Spanish Government (CICYT) under project: TIN2008-06890-C02-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. Alonso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alonso, J.M., Magdalena, L. HILK++: an interpretability-guided fuzzy modeling methodology for learning readable and comprehensible fuzzy rule-based classifiers. Soft Comput 15, 1959–1980 (2011). https://doi.org/10.1007/s00500-010-0628-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-010-0628-5

Keywords

Navigation